NOAA NTHMP Mapping & Modeling Subcommittee Benchmarking Workshop: Tsunami Current

NEOWAVE Validation

Yefei Bai, Yoshiki Yamazaki, and Kwok Fai Cheung

Department of Ocean and Resources Engineering University of Hawaii at Manoa

> Portland, Oregon February 9 - 10, 2015

Outline

- NEOWAVE Model Introduction
- Prior Model Validation 2011 Tohoku Tsunami
 - Honolulu Coast
- Benchmark Cases
 - **BM**1
 - BM2
 - BM5
- Conclusions

NEOWAVE

Non-hydrostatic Evolution of Ocean Wave

Governing Equations

- Depth-integrated, Non-hydrostatic Equations
 - Weakly dispersive waves through non-hydrostatic pressure (Stelling and Zijlema, 2003; Yamazaki *et al.*, 2009 & 2011)

Numerical Schemes

- Semi-implicit, Finite Difference (FD) Model
 - Explicit hydrostatic solution
 - Implicit non-hydrostatic solution
- Two-Way, Grid-Nesting Scheme
 - Standard grid refinement scheme for FD tsunami models
- Momentum Conserved Advection (MCA) Scheme
 - Shock capturing scheme for FD models (Stelling and Duinmeijer, 2003; Yamazaki *et al.*, 2009 & 2011)

Non-hydrostatic/Hydrostatic Hybrid Scheme

Approximation of Energetic Breaking Waves as Bores

- Dispersive wave model generates artificial spike when wave front becomes steep at wave breaking or bore development
- Breaking region may consider hydrostatic for bore approximation
 - Hydrostatic pressure is main driving force
 - Non-hydrostatic pressure effects are negligible

Shallow-Water Flow around Submerged Conical Island (Lloyd and Stansby, 1997)

Close View of Conical Island with Three Resolutions

BM NO.1 – Velocity Comparison

center point (x, y) = (1.02m, 0.00m)

BM NO.1 – Vortex Field Comparison

BM NO. 1 – Vortex Field Closeview

- Vortices are formed faster in finer grid
- Clear boundary between clockwise and counterclockwise vortex field

Shallow-Water Flow around Hilo Bay

BM NO.2: DEM Data Modification Original NTHMP Hilo DEM Data - Induce Instability

Ο

BM NO.2: DEM Data Modification Modified NTHMP Hilo DEM Data - Remove Instability

Ο

BM NO.2 – Tide Gauge Comparison

BM NO.2 – Velocity Comparison

BM NO.2 – Velocity Comparison

BM NO.2 – Vortex Field Comparison

Shallow Shelf with a Conical Island

- Inundation Science & Engineering Cooperative (ISEC) Community Workshop
- Oregon State University, Corvallis, Oregon, July 8 10, 2009 (<u>http://isec.nacse.org/workshop/isec_workshop_2009/</u>)

BM NO. 5 Model Setup

Velocity Components Comparison at ADVs

Vortex Field Comparison

- Vortices are generated in the wake and around the island
- Vortex strength is weaker in coarser grid but general pattern remains in all three grid sizes
- Runup process also involve vortex field

Conclusions

- NEOWAVE can reproduce the mean flow which is less sensitive to resolution
- Numerically generated vortex field depends on
 - Spatial and temporal resolution
 - Bottom friction
 - Numerical scheme
 - Generation mechanism
- Relation with physical vortex field