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A set of model equations for water-wave propagation is derived by piecewise integra-
tion of the primitive equations of motion through two arbitrary layers. Within each
layer, an independent velocity profile is derived. With two separate velocity profiles,
matched at the interface of the two layers, the resulting set of equations has three
free parameters, allowing for an optimization with known analytical properties of
water waves. The optimized model equations show good linear wave characteristics
up to kh ≈ 6, while the second-order nonlinear behaviour is captured to kh ≈ 6 as
well. A numerical algorithm for solving the model equations is developed and tested
against one- and two-horizontal-dimension cases. Agreement with laboratory data is
excellent.
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1. Introduction

The past decade saw the advent and widespread applications of Boussinesq-type
equation models for studying water-wave propagation in one and two horizontal
dimensions. This depth-integrated modelling approach employs a polynomial approx-
imation of the vertical profile of the velocity field, thereby reducing the dimensions of
a three-dimensional problem by one. The conventional Boussinesq equations (Pere-
grine 1967), which make use of a quadratic polynomial approximation for the vertical
flow distribution, have two major constraints:

(i) the depth-averaged model describes the frequency dispersion of wave propaga-
tion in intermediate depths poorly;

(ii) the weakly nonlinear assumption limits the largest wave height that can accu-
rately be modelled.

These constraints are consistent with the fundamental assumption of the Boussinesq
equations, which states that leading-order dispersion and nonlinear effects are of the
same order and are weak, i.e. O(µ2

0) = O(ε0) � 1, where µ0 is equal to the wave-
number times depth (kh) and ε0 is the amplitude over depth (a/h). The dispersive
properties of the conventional Boussinesq equations have been improved by modify-
ing the dispersive terms (Madsen & Sørensen 1992) or using a reference velocity at a
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specified depth (Nwogu 1993). These techniques yield a set of equations whose linear
dispersion relation can be adjusted such that the resulting intermediate-depth dis-
persion characteristics are close to those of linear wave theory. Liu (1994) and Wei et
al . (1995) extended Nwogu’s approach to highly nonlinear waves, developing models
that not only can be applied to intermediate water depth but also are capable of simu-
lating wave propagation with strong nonlinear interaction, i.e. ε0 = O(1). In general,
these model equations contain accurate linear dispersion properties to kh ≈ 3 (e.g.
Nwogu 1993). In intermediate depths, nonlinear properties tend to exhibit larger
relative errors than linear properties (Madsen & Schäffer 1998), although additional
enhancements can indeed create accurate nonlinear characteristics to near the linear
accuracy limit, kh ≈ 3 (Kennedy et al . 2001).

Further enhancing the deep-water accuracy of the depth-integrated approach
are the so-called high-order Boussinesq-type equations. While the model equations
described in the previous paragraph use a quadratic polynomial approximation for
the vertical flow distribution, these high-order models use fourth- (and higher) order
polynomial approximations. Gobbi et al . (2000), using a fourth-order polynomial,
developed a model with excellent linear dispersive properties up to kh ≈ 6. Nonlin-
ear behaviour was faithfully captured to kh ≈ 3. With the drastic improvement in
accuracy over previous model equations comes a significant computational increase.
The fourth-order polynomial employed results in fifth-order spatial derivatives in an
extremely complex equation system, requiring an equally complex numerical scheme.
Additionally, the complexity increases again for a two-horizontal dimension (2HD)
problem, for which no high-order modelling attempts have yet been made. The reader
is directed to Madsen & Schäffer (1998), a thorough analysis of numerous different
depth-integrated model equations, for additional information.

In this paper, a different approach to obtaining a high-order depth-integrated
model is taken. Instead of employing a high-order polynomial approximation for the
vertical distribution of the flow field, two quadratic polynomials are used, matched
at an interface that divides the water column into two layers. This approach leads to
a set of model equations without the high-order spatial derivatives associated with
high-order polynomial approximations. The multi-layer concept has been attempted
previously by Kanayama et al . (1998), although the derivation and final model equa-
tions are very different from those presented here. Internal wave and stratified flow
modellers often employ a multi-layering concept, although the layers are of different
density and thus represent a dissimilar physical problem to the one examined in this
paper. Madsen et al . (2002) developed a model, based on the method of Agnon et
al . (1999), accurate to extremely deep water (kh ≈ 40). Their derivation, fundamen-
tally different from the one presented in this paper, involves optimal expansions of the
Laplace equation, allowing for excellent deep-water linear and nonlinear dispersive
properties of the resulting model. By using multiple expansions at various levels in
the water column, the deep-water accuracy is achieved while only requiring the fifth-
order spatial derivatives found in alternative high-order models with much smaller
deep-water limitations. However, Madsen et al .’s model consists of more equations
than the alternative models, and thus more unknowns. This is quite similar to the
basic idea of the multi-layer derivation presented here: to trade fewer unknowns and
higher spatial derivatives for more unknowns and lower spatial derivatives.

In § 2 of this paper, the derivation of the two-layer, depth-integrated model is
presented. Analysis of the model follows, including examination of linear disper-
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Figure 1. Problem set-up.

sion, shoaling, and nonlinear properties. These properties are optimized, based on
agreements with linear and Stokes wave theories, and it is shown that the two-layer
model is accurate into deep water. Finally, a numerical algorithm is developed for
the general 2HD problem, and numerical solutions are compared with analytical and
experimental data.

2. Derivation of model equations

(a) Governing equations and boundary conditions

The goal of this section is to derive a set of equations by integrating the primitive
equations of motion in the vertical direction. It is noted that, although the deriva-
tion presented here employs just two layers, the procedure is directly extendable
to any arbitrary number of layers (Lynett 2002). The flow region is divided by an
interface, z′ = η′, as shown in figure 1. The resulting upper layer has a characteristic
thickness d1 (all variables contained entirely in this layer will be denoted with the
subscript ‘1’), while the lower layer has a thickness d2 (variables in this layer denoted
by the subscript ‘2’). The determination of the location of the interface constitutes
a part of the formulation of the model equations. Using the layer thicknesses d1 and
d2 as the vertical length-scales in the upper and lower layer, respectively, the charac-
teristic length of the wave �0 as the horizontal length-scale, h0 as the characteristic
water depth, �0/

√
gh0 as the time-scale, and the characteristic wave amplitude a0 as

the scale of wave motion, we can define the dimensionless variables

(x, y) =
(x′, y′)

�0
, zn =

z′

dn
, t =

√
gh0t

′

�0
,

h =
h′

h0
, ζ =

ζ ′

a0
, η =

η′

d1
,

(Un, Vn) =
(U ′

n, V ′
n)

ε0
√

gh0
, Wn =

W ′
n

ε0µ0
√

gh0
, pn =

p′

ρga0
,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)
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in which the subscript n = 1, 2 indicates the layer index, (Un, Vn) represent the
horizontal velocity components in the different layers, Wn the vertical velocity com-
ponent, and pn the pressure. Note that the vertical coordinate, zn, is scaled differently
in each layer. Two dimensionless parameters have been introduced in (2.1), i.e.

ε0 =
a0

h0
, µ0 =

h0

�0
. (2.2)

Assuming that the viscous effects are insignificant, the wave motion can be described
by the continuity equation and the Euler’s equations, i.e.

dn

h0
∇ · Un +

∂Wn

∂zn
= 0, (2.3)

∂Un

∂t
+ ε0Un · ∇Un + εnWn

∂Un

∂zn
= −∇pn, (2.4)

µ2
n

(
∂Wn

∂t
+ ε0Un · ∇Wn

)
+ ε0µ

2
0Wn

∂Wn

∂zn
= −

(
∂pn

∂zn
+

1
εn

)
, (2.5)

where
µ2

n =
dnh0

l20
, εn =

a0

dn
,

Un = (Un, Vn) denotes the horizontal velocity vector, and ∇ = (∂/∂x, ∂/∂y) the
horizontal gradient vector.

On the free surface, z1 = ε1ζ(x, y, t), the usual kinematic and dynamic boundary
condition applies:

W1 =
∂ζ

∂t
+ ε0U1 · ∇ζ on z1 = ε1ζ, (2.6)

p1 = 0 on z1 = ε1ζ. (2.7)

Along the seafloor,

z2 = −h0

d2
h,

the kinematic boundary condition requires

W2 + U2 · ∇h +
1
ε0

∂h

∂t
= 0 on z2 = −h0

d2
h. (2.8)

Note that due to the assumption that h = h(x, y, t), the time derivative of h appears
in the bottom boundary condition. This assumption will allow for the study of waves
generated by seafloor movements, such as underwater landslides. At the interface
between the layers, continuity of pressure and velocity is required:

p1 = p2 on z1 = η, z2 =
d1

d2
η, (2.9)

U1 = U2 on z1 = η, z2 =
d1

d2
η, (2.10)

W1 = W2 on z1 = η, z2 =
d1

d2
η. (2.11)
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For later use, we note here that the exact depth-integrated continuity equation can be
obtained by integrating (2.3) across each of the layers. After applying the boundary
conditions (2.6), (2.8) and (2.11), the resulting equation reads

∇ ·
[

d1

h0

∫ ε1ζ

η

U1 dz1 +
d2

h0

∫ d1η/d2

−h0h/d2

U2 dz2

]
+

1
ε0

∂h

∂t
+

∂ζ

∂t
= 0. (2.12)

(b) Approximate two-dimensional governing equations

A perturbation analysis will be performed using the assumption

O(µ2
1) = O(µ2

2) � 1. (2.13)

Using µ2
n as the small parameter, we can expand the dimensionless physical variables

as power series of µ2
n:

f =
∞∑

M=0

µ2M
n f [M ]; (f = Un, Wn, ζ, pn). (2.14)

Furthermore, we will assume the flow is irrotational. Zero horizontal vorticity yields
the conditions

∂

∂zn
U [0]

n = 0, (2.15)

∂

∂zn
U [1]

n = ∇W [0]
n . (2.16)

Consequently, from (2.15), the leading-order horizontal velocity components are inde-
pendent of the vertical coordinate, i.e.

U [0]
n = U [0]

n (x, y, t). (2.17)

Substituting (2.14) into the continuity equation (2.3) and the boundary conditions
(2.6) and (2.8), we collect the leading-order terms as

dn

h0
∇ · U [0]

n +
∂W

[0]
n

∂zn
= 0, −h0

d2
h < z2 <

d1

d2
η, η < z1 < ε1ζ, (2.18)

W
[0]
1 =

∂ζ

∂t
+ ε0U

[0]
1 · ∇ζ on z1 = ε1ζ, (2.19)

W
[0]
2 + U

[0]
2 · ∇h +

1
ε0

∂h

∂t
= 0 on z2 = −h0

d2
h. (2.20)

Integrating (2.18) with respect to zn and using (2.20) to determine the integration
constant, we obtain the vertical profile of the vertical velocity components in the
layers,

W
[0]
2 = −z2S

[0]
2 − T

[0]
2 , (2.21)

W
[0]
1 = −z1S

[0]
1 − T

[0]
1 , (2.22)
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where
S

[0]
2 =

d2

h0
∇ · U

[0]
2 , T

[0]
2 = ∇ · (hU

[0]
2 ) +

1
ε0

∂h

∂t
,

S
[0]
1 =

d1

h0
∇ · U

[0]
1 , T

[0]
1 = η

(
d1

d2
S

[0]
2 − S

[0]
1

)
+ T

[0]
2 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.23)

Similarly, by integrating (2.16) in zn with information from (2.21) and (2.22), we
can find the corresponding vertical profiles of the horizontal velocity components,

U [1]
n = −z2

n

2
∇S[0]

n − zn∇T [0]
n + Cn(x, y, t), (2.24)

in which Cn are unknown functions. Up to O(µ2
n), the horizontal velocity components

can be expressed as

Un = U [0]
n − µ2

n{1
2z2

n∇S[0]
n + zn∇T [0]

n + Cn} + O(µ4
n). (2.25)

Now, we can define the horizontal velocity vectors, un(x, y, κn(x, y, t), t) evaluated
at zn = κn(x, y, t) as

un = U [0]
n − µ2

n{1
2κ2

n∇S[0]
n + κn∇T [0]

n + Cn} + O(µ4
n). (2.26)

Subtracting (2.26) from (2.25) we can express Un in terms of un as

U2 = u2 − µ2
2{1

2(z2
2 − κ2

2)∇S2 + (z2 − κ2)∇T2} + O(µ4
2), (2.27)

U1 = u1 − µ2
1{1

2(z2
1 − κ2

1)∇S1 + (z1 − κ1)∇T1} + O(µ4
1, µ

2
1µ

2
2), (2.28)

where
S2 =

d2

h0
∇ · u2, T2 = ∇ · (hu2) +

1
ε0

∂h

∂t
,

S1 =
d1

h0
∇ · u1, T1 = η

(
d1

d2
S2 − S1

)
+ T2,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.29)

Note that un = U
[0]
n + O(µ2

n) has been used in (2.27) and (2.28).
The pressure field is determined by first approximating the vertical momentum

equation (2.5) as

∂pn

∂zn
= − 1

εn
− µ2

n

(
∂W

[0]
n

∂t
+ ε0U

[0]
n · ∇W [0]

n

)
− µ2

0

(
ε0W

[0]
n

∂W
[0]
n

∂zn

)
+ O(µ2

0µ
2
n, µ4

n),

−h0

d2
h < z2 <

d1

d2
η for n = 2, η < z1 < ε1ζ for n = 1. (2.30)

We can integrate the equation above with respect to z1 to find the pressure field in
the upper layer as

p1 = ζ − z1

ε1
+ µ2

1

{
1
2(z2

1 − ε2
1ζ

2)
∂S1

∂t
+ (z1 − ε1ζ)

∂T1

∂t

+ 1
2ε0(z2

1 − ε2
1ζ

2)u1 · ∇S1 + ε0(z1 − ε1ζ)u1 · ∇T1

}
+ ε0µ

2
0{1

2(ε2
1ζ

2 − z2
1)S2

1 + (ε1ζ − z1)S1T1} + O(µ2
0µ

2
n, µ4

n), η < z1 < ε1ζ.
(2.31)
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To derive the governing equations for u1, we substitute (2.28) and (2.31) into (2.4),
enforce zero vertical vorticity (see Hsiao & Liu 2002), and obtain

∂u1

∂t
+ 1

2ε0∇(u1 · u1) + ∇ζ + µ2
1

∂

∂t
{1

2κ2
1∇S1 + κ1∇T1}

+ ε0µ
2
1∇(κ1u1 · ∇T1 + 1

2κ2
1u1 · ∇S1) + ε0µ

2
0

[
T1∇T1 − ∇

(
ζ
∂T1

∂t

)]

+ ε2
0µ

2
0∇

(
ζS1T1 − h0

d1

ζ2

2
∂S1

∂t
− ζu1 · ∇T1

)

+ ε2
0ε1µ

2
0∇

[
ζ2

2

(
S2

1 − h0

d1
u1 · ∇S1

)]
= O(µ2

0µ
2
1). (2.32)

Note that ε0µ
2
0 = ε1µ

2
1, and all coefficients in the above equation are written in terms

of µ0 and ε0 whenever possible.
With boundary condition (2.10) and the known velocity profiles (2.27) and (2.28),

u2 can be expressed as a function of u1:

u2 + µ2
2

{
1
2

(
κ2

2 − d2
1

d2
2
η2

)
∇S2 +

(
κ2 − d1

d2
η

)
∇T2

}
= u1 + µ2

1{1
2(κ2

1 − η2)∇S1 + (κ1 − η)∇T1} + O(µ4
1, µ

2
1µ

2
2, µ

4
2). (2.33)

Thus, the lower-layer velocity can be directly calculated with knowledge of the upper-
layer velocity.

The exact continuity equation (2.12) can be rewritten approximately in terms of
ζ and un. Substituting (2.27) into (2.12), we obtain

h0

d1ε0

∂h

∂t
+

h0

d1

∂ζ

∂t
+ ∇ ·

[
(ε1ζ − η)u1 +

(
η +

h0

d1
h

)
u2

]

− µ2
2
d2

d1
∇ ·

{[
1
6

(
η3 d3

1

d3
2

+ h3 h3
0

d3
2

)
− 1

2

(
η
d1

d2
+ h

h0

d2

)
κ2

2

]
∇S2

+
[
1
2

(
η2 d2

1

d2
2

− h2 h2
0

d2
2

)
−

(
η
d1

d2
+ h

h0

d2

)
κ2

]
∇T2

}
− µ2

1∇ · {[16(ε3
1ζ

3 − η3) − 1
2(ε1ζ − η)κ2

1]∇S1 + [12(ε2
1ζ

2 − η2) − (ε1ζ − η)κ1]∇T1}
= O(µ4

1, µ
2
1µ

2
2, µ

4
2). (2.34)

Equations (2.32)–(2.34) are the coupled governing equations, written in terms of un

and ζ, for highly nonlinear, dispersive waves.
We remark here that the matching conditions along the interface, (2.10) and (2.11),

do not require the continuity of the vertical velocity gradients. Consequently, this
leads to a discontinuity of the nonlinear vertical transport terms in the horizontal and
vertical Euler equations. Specifically, the discontinuity arises in the εnWn(∂Un/∂zn)
term in (2.4) and the ε0µ

2
0Wn(∂Wn/∂zn) term in (2.5). However, with calculation of

these nonlinear terms using the derived vertical velocity profiles, (2.21), (2.22), and
horizontal velocity profiles, (2.27), (2.28), it can be shown that the discontinuity is
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of the truncation error order in the final model, (2.32)–(2.34), i.e.

∂U1(z1 = η)
∂z1

=
∂U2(z2 = d1η/d2)

∂z2
+ O(µ4

1, µ
2
1µ

2
2, µ

4
2), (2.35)

µ2
0
∂W1(z1 = η)

∂z1
= µ2

0
∂W2(z2 = d1η/d2)

∂z2
+ O(µ2

0µ
2
1, µ

2
0µ

2
2). (2.36)

Thus, the discontinuity of the nonlinear, vertical transport terms will not affect the
overall accuracy of the model equations.

3. Analysis of model equations

In this section, the properties of the two-layer model equations will be scrutinized
and optimized. First, it is shown that the two-layer model equations reduce to the
well-studied, ‘extended’ Boussinesq model derived by Nwogu (1993) after some O(µ2

n)
manipulation. With the use of O(µ2

n) substitutions, namely

u2 = u1 + O(µ2
n), (3.1)

we can eliminate one of the unknowns from our equation system. Rewriting (2.34)
in terms of u1 only, assigning d1 = h0, κ2 = −(h0/d2)h, η = −h, and examining the
weakly nonlinear form of the equations, gives

O(ε0µ
2
0, µ

4
0)

=
1
ε0

∂h

∂t
+

∂ζ

∂t
+ ∇ · [(ε0ζ + h)u1]

− µ2
0∇ ·

{
[16h3 − 1

2hκ2
1]∇(∇ · u1) − [12h2 + hκ1]∇

[
∇ · (hu1) +

1
ε0

∂h

∂t

]}
.

(3.2)

The momentum equation (2.32) becomes

O(ε0µ
2
0, µ

4
0) =

∂u1

∂t
+ ε0u1 · ∇u1 + ∇ζ

+ µ2
0

∂

∂t

{
κ2

1

2
∇(∇ · u1) + κ1∇

[
∇ · (hu1) +

1
ε0

∂h

∂t

]}
. (3.3)

This system for ζ and u1 is identical to the model derived by Nwogu, except for
the addition of the ∂h/∂t terms. Additionally, the nonlinear dispersive terms, which
have been truncated for the sake of brevity in (3.2) and (3.3), are identical to those
derived by Liu (1994) and later implemented numerically by Lynett & Liu (2002). For
the rest of this paper, the ‘extended’ Boussinesq model including all the nonlinear
dispersive terms up to O(µ2

0), as given by Liu (1994), will be referred to as the
one-layer model.

For the rest of this section, the focus will be on analysis of the three-unknown
(ζ,u1,u2), two-layer system. Additionally, for the rest of this paper, all variables
discussed are in dimensional form, with primes no longer applied. The momentum
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equation, (2.32), can be expressed in a more compact, dimensional form:

∂u1

∂t
+ 1

2∇(u1 · u1) + g∇ζ +
∂

∂t
{1

2κ2
1∇S1 + κ1∇T1 − ∇(1

2ζ2S1) − ∇(ζT1)}

+ ∇
{

∂ζ

∂t
(T1 + ζS1) + (κ1 − ζ)(u1 · ∇)T1

+ 1
2(κ2

1 − ζ2)(u1 · ∇)S1 + 1
2 [(T1 + ζS1)2]

}
= 0. (3.4)

This is the momentum equation that will be analysed and numerically solved in this
paper. Before solving the system numerically, the linear and nonlinear dispersion
properties are examined for the case of unidirectional propagation in water of con-
stant depth. Let us define the arbitrary evaluation levels and the boundary between
the two layers as

κ1 = α1h + β1ζ, η = α2h + β2ζ, κ2 = α3h + β3ζ, (3.5)

where the coefficients α and β are arbitrary and to be defined. From (3.4), the one-
horizontal-dimension, constant-water-depth, two-layer equations can be obtained,
which are given in Appendix A, and will be used to determine the linear and nonlinear
properties of the two-layer model. The solution of the one-dimensional equations
takes the form

ζ = εζ(0)eiθ + ε2ζ(1)e2iθ + · · · ,

u1 = εu
(0)
1 eiθ + ε2u

(1)
1 e2iθ + · · · ,

u2 = εu
(0)
2 eiθ + ε2u

(1)
2 e2iθ + · · · .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.6)

where θ = kx − wt, k is the wavenumber, w is the wave frequency and ε is simply
an ordering parameter. In following sections, the form of above solution will be
used to determine the linear dispersion, linear shoaling and leading-order nonlinear
properties of the two-layer model equations. Only the formulae will be presented in
the body of the paper, with derivation details presented in Appendix A.

(a) Linear dispersion relation

After substituting (3.6) into the governing equations (2.32)–(2.34), the first order
(in ε) system yields the linear dispersion relation

c2 =
w2

k2 =
gh[1 + N1(kh)2 + N2(kh)4]

1 + D1(kh)2 + D2(kh)4
, (3.7)

where c is the wave celerity and the coefficients N1, N2, D1 and D2 are given in
Appendix A a and are solely functions of α1, α2 and α3. The above dispersion relation
will be compared with the [4, 4] Padé approximation

c2 =
w2

k2 =
gh[1 + 1

9(kh)2 + 1
945(kh)4]

1 + 4
9(kh)2 + 1

63(kh)4
(3.8)

of the exact linear dispersion relation,

c2
e =

w2

k2 =
g

k
tanh(kh). (3.9)
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The Padé approximation used here is approximation of tanh(kh)/kh, where the
numbers in the Padé brackets represent the highest polynomial order of kh in the
numerator and denominator. The group velocity of the two-layer model equations,
cg, can be determined straightforwardly by taking the derivative of (3.7) with respect
to k.

(b) Vertical velocity profiles

Let us define the function f1(z) as the horizontal velocity profile, with constant
water depth, normalized by its value at z = 0. This function is derived from the sub-
stitution of (3.6) into (2.27) and (2.28), and is composed of two quadratic polynomial
elements, given by

f1(z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 + (kh)2[12(z2/h2 − α2
1) + α2(α1 − z/h)

+u
(0)
2 /u

(0)
1 (α2 + 1)(z/h − α1)]

1 − (kh)2[12α2
1 − α2α1 + u

(0)
2 /u

(0)
1 (α2 + 1)α1]

for z � η = α2h,

f1(η)
1 + (kh)2[12(z2/h2 − α2

3) + (z/h − α3)]
1 + (kh)2[12(α2

2 − α2
3) + (α2 − α3)]

for z < η = α2h.

(3.10)
From the linear-equation system we can also find that

u
(0)
1 =

gζ(0)[kh − δ8(kh)3]
hw[1 + D1(kh)2 + D2(kh)4]

, (3.11)

u
(0)
2 =

gζ(0)[kh + δ7(kh)3]
hw[1 + D1(kh)2 + D2(kh)4]

, (3.12)

where δ7 and δ8 are given in Appendix A, and thus the ratio u
(0)
2 /u

(0)
1 present in (3.10)

can be evaluated. Similarly, the vertical profile of the vertical velocity component,
normalized by its value at the still water level, is given by

f2(z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

z/h − α2 + u
(0)
2 /u

(0)
1 (α2 + 1)

−α2 + u
(0)
2 /u

(0)
1 (α2 + 1)

for z � η = α2h,

f2(η)
z/h + 1
α2 + 1

for z < η = α2h,

(3.13)

which is a piecewise linear function.

(c) Linear shoaling properties

Based on linear theory, the exact shoaling gradient is given as

ae
x

a
= Ae

x

hx

h
= −kh tanh(kh)

[1 − kh tanh(kh)][1 − tanh2(kh)]
{tanh(kh) + kh[1 − tanh2(kh)]}2

hx

h
. (3.14)

The linear shoaling properties of the present two-layer model are expressed as
ax

a
= Ax

hx

h
. (3.15)

The determination of Ax follows the procedure given by Schäffer & Madsen (1995),
and is described in Appendix A b.
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(d) Second-order, nonlinear interactions: steady waves

Now, the nonlinear corrections to the linear problem are sought. Collecting O(ε2)
terms from the governing equations yields the second-order free-surface correction,

ζ(1) = kζ(0)2L5, (3.16)

where the solution procedure for L5 is described in Appendix A c. This approximate
expression can be compared with the second-order Stokes wave solution:

ζ
(1)
Stokes = 1

4kζ(0)2 [3 coth3(kh) − coth(kh)]. (3.17)

(e) Second-order, nonlinear interactions: bichromatic interactions

Examining a two-wave group, the free surface can be written as

ζ = εζ
(0)
1 ei(k1x−w1t) + εζ

(0)
2 ei(k2x−w2t) + ε2ζ

(1)
1 e2i(k1x−w1t)

+ ε2ζ
(1)
2 e2i(k2x−w2t) + ε2ζ+ei(k+x−w+t) + ε2ζ−ei(k−x−w−t), (3.18)

where ζ+ and ζ− are the sum and difference components of the two first-order wave
frequencies, w∓ = w1 ∓ w2, and wavenumbers, k∓ = k1 ∓ k2. Similar expressions can
be given for un. The bichromatic solution form is substituted into our model equa-
tions, allowing the determination of ζ∓. The derivation method for ζ∓ is given in
Appendix A c. The sum and difference free-surface components can be compared
with those from Stokes theory, ζ∓

Stokes, which can be found in Schäffer (1996).

(f ) Choice of arbitrary levels: linear optimization

Through examination of linear and nonlinear properties, the most accurate set of
arbitrary levels will be chosen in this section. First, the linear properties of the two-
layer model will be optimized, independent of nonlinearity. In the linear sense, the
three levels are given as κ1 = α1h, η = α2h and κ2 = α3h, where κ1 and κ2 are the
levels at which horizontal velocities are evaluated in the upper and lower layers, and
η is the location of the interface between the layers. Of course, possible values are
bounded by 0 � α1 � α2 � α3 � −1. Defining a model accuracy, or model error, can
be difficult and often can depend on the specific physical problem being examined.
For this analysis, a representation of the overall error, including errors in wave speed,
group velocity and shoaling, is sought. The error will be given by the minimization
parameter ∆lin:

∆lin =
1
3

(∑Ω
kh=0.1(|ce − c|)/(kh)∑Ω

kh=0.1(|ce|)/(kh)

+
∑Ω

kh=0.1(|ce
g − cg|)/(kh)∑Ω

kh=0.1(|ce
g|)/(kh)

+
∑Ω

kh=0.1(|Ae
x − Ax|)/(kh)∑Ω

kh=0.1(|Ae
x|)/(kh)

)
, (3.19)

where ce, ce
g and Ae

x are the exact linear phase speed, group velocity and shoaling
gradient, whereas c, cg and Ax are the approximate values taken from the two-layer
model derived here. Note that errors in both c and cg are related to the accuracy of
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Table 1. α-values from linear optimization

Ω(kh) α1 α2 α3 ∆lin

3 −0.092 −0.256 −0.625 0.002
5 −0.127 −0.266 −0.618 0.006

10 −0.128 −0.262 −0.618 0.02
[4, 4] Padé −0.248 −0.459 −0.741 —

the two-layer dispersion relation. The right-hand side is divided by three, so as to
normalize the total error created by the three different sources. All of the summations
are divided by kh so that errors at low wavenumbers are more important than high
wavenumber errors. The reason for this weighting is a peculiarity of the optimization:
it was possible to sacrifice low-wavenumber accuracy (kh < 1.5) for accuracy at
higher wavenumbers. Accuracy at low wavenumbers is paramount for applications
in shallow water, and hence the weighting. Summations are started at kh = 0.1 also
because of the kh weighting, and the subsequent need to avoid division by zero. The
upper summation limit, kh = Ω, is determined such that the minimum ∆lin is less
than some threshold.

To test the linear properties of the model equations, ∆lin, which can be thought
of as an overall relative error, will be set equal to three arbitrary values: 0.002, 0.006
and 0.020. The behaviour of the model equations at these error constraints will be
scrutinized, and a ‘proper’ ∆lin value will be recommended. A summary of the opti-
mization results is shown in table 1. Also shown in last row of the table are the
α-values required to create a [4, 4] Padé approximation using the two-layer disper-
sion relation. Note that with the [4, 4] Padé coefficients and Ω = 5, ∆lin = 0.2, due
to a poor shoaling description. Figure 2 shows the linear properties for the cases
where ∆lin = 0.002 and 0.006. This figure also shows the dispersion properties cor-
responding to the [4, 4] Padé. The [4, 4] Padé yields excellent phase-speed agreement
up to kh ≈ 6, good group velocity agreement to kh ≈ 3, and an accurate shoaling
gradient to only kh ≈ 1. For the ∆lin = 0.002 case, we can see that the linear dis-
persion properties (phase and group speed) are not quite as good as the [4, 4] Padé
approximation. Linear shoaling is reproduced very well up to kh ≈ 3. Looking now
at the ∆lin = 0.006 case, the model phase speed has better deep-water accuracy than
the [4, 4] Padé approximation. The price paid for this increased accuracy is a group
velocity with a ca. 1% error for kh > 3. The shoaling gradient, however, matches the
linear solution quite well up to kh ≈ 9, with a very good agreement to kh ≈ 5. The
results for the α-values from ∆lin = 0.02 are not plotted, due to the fact that they
are nearly identical to the plotted ∆lin = 0.006 values.

For the rest of the paper, all the results will employ the α-values from the ∆lin =
0.006 minimization. This set was chosen based on its overall good properties. It can
be expected that phase and group velocity will be captured for kh-values up to 6.
Linear shoaling will be excellent up to a kh ≈ 5, although still reasonable up to
kh ≈ 9.

The vertical profiles of the velocity components with the α-values for ∆lin = 0.06
are given in figure 3. Also plotted on this figure are the velocity profiles of Gobbi et
al .’s (2000) high-order derivation, which is a one-layer model, including terms up to
O(µ4

0). In general, the profiles for the present model and Gobbi et al .’s results are
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Figure 2. Linear properties of (a) wave speed, (b) group velocity and (c) shoaling gradient of
the two-layer model with α1 = −0.092, α2 = −0.256, α3 = −0.625 (∆lin = 0.002) shown by the
dashed line, and α1 = −0.127, α2 = −0.266, α3 = −0.618 (∆lin = 0.006) shown by the dotted
line. Comparison of wave speed and group velocity of the two-layer model with the exact linear
relation (solid line); the dash-dotted line is the [4, 4] Padé approximation.

similar, with the two-layer model exhibiting larger error in the case of kh = 3 and
significantly smaller error in the kh = 9 case.

(g) Choice of arbitrary levels: nonlinear optimization

From the linear optimization of the previous section, the three levels are given as

κ1 = −0.127h + β1ζ, η = −0.266h + β2ζ, κ2 = −0.618h + β3ζ. (3.20)

In this section, through examination of nonlinear properties, the β coefficients will
be chosen. The nonlinear optimization detailed in this section is similar to that
performed by Kennedy et al . (2001) while working with their one-layer model. Fol-
lowing the same procedure as the linear optimization, a representation of the non-
linear error, including errors in the second-order free-surface correction and sub-
harmonic/superharmonic transfer functions is given by the minimization parame-
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Figure 3. Vertical profile of horizontal velocity (top row) and vertical velocity (bottom row)
under the crest of a sine wave for three different kh-values, as given by linear theory (solid line),
the high-order model of Gobbi et al . (2000) (dotted line), and the two-layer model presented in
this paper employing the ∆lin = 0.006 coefficients (dashed line).

Table 2. β-values from nonlinear optimization

Ω(kh) β1 β2 β3 ∆NL

5 0.031 −0.001 −0.063 0.018
10 0.74 1.037 −0.234 0.034

ter ∆NL:

∆NL =
1
2

(∑Ω
kh=1(|ζ

(1)
Stokes − ζ(1)|)/(kh)∑Ω

kh=1(|ζ
(1)
Stokes|)/(kh)

+

∑Ω
k1h=1

∑Ω
k2h=1(|ζ

∓
Stokes − ζ∓|)/(k1h + k2h)∑Ω

k1h=1
∑Ω

k2h=1(|ζ
∓
Stokes|)/(k1h + k2h)

)
. (3.21)

Note that the summation limit for the nonlinear error begins at kh = 1.0. The
extremely large values of these nonlinear parameters at kh-values less than one lead
to poor error quantifications at higher wavenumbers when using this type of error
formulation. Also, Stokes’s wave theory yields a good physical description of wave
propagation only for kh-values larger than one, and thus analysing and optimizing
the model properties for kh-values less than one may not be important. Notice that
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Figure 4. Second-order free-surface correction, ζ(1), relative to the Stokes solution, with no non-
linear optimization (β1 = β2 = β3 = 0) shown by the dash-dotted line, the ∆NL = 0.018 results
by the dotted line, and the ∆NL = 0.034 results by the dashed line.

the self–self interaction has an increased weighting in this error formulation, as it
is included in both the terms comprising ∆NL. A summary of the nonlinear opti-
mization results is shown in table 2. Figure 4 shows the second-order free-surface
amplitude correction associated with these two sets of β, along with the correction
without nonlinear optimization, i.e. β1 = β2 = β3 = 0. The ∆NL = 0.018 shows excel-
lent agreement to kh ≈ 7, where the relative error is just over 5%. After this point,
the error grows quickly. For the ∆NL = 0.034 optimization, fairly large errors are
found at kh ≈ 3, although the error is much less for high kh as compared with the
∆NL = 0.018 case. The bichromatic transfer amplitudes are shown in figure 5, where
the superharmonics are given in the upper left, and the subharmonics the lower right.
For the case without nonlinear optimization, figure 5a), good agreement is only found
at small kh-values for both super- and subharmonics. However, with some nonlinear
optimization, as shown in figure 5b) for ∆NL = 0.018, the superharmonic amplitudes
become much more accurate. In fact, transfers where k1h and k2h are close show
excellent agreement, with the 5% error contour extending to k1h ≈ k2h ≈ 6.5. How-
ever, subharmonic transfer are relatively unaffected by the optimization, and lose
accuracy quickly for k1h-values greater than 4. With respect to the subharmonic
amplitudes, the same can be said for the ∆NL = 0.034 optimization as well, shown
in figure 5c). Accurate superharmonics are better predicted for this optimization,
where the 5% error contour extends to very deep water. It is noted that these trans-
fer plots show very similar behaviour to those given by Kennedy et al . (2001) for the
nonlinear-optimized one-layer model. In fact, the error of the two-layer model, for
the ∆NL = 0.018 case, is approximately one-half of their one-layer model error at all
(k1h, k2h) combinations.

As with the linear optimization, choosing which set of β-values is best to use
depends on the specifics of the problem to be examined. We choose to employ the
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Figure 5. Sub- and superharmonic transfer amplitudes for bichromatic wave interactions, ζ∓,
relative to the Stokes solution, where subharmonics are shown in the lower right, and super-
harmonics in the upper left. (a) Results with no nonlinear optimization (β1 = β2 = β3 = 0),
(b) ∆NL = 0.018 results, (c) ∆NL = 0.034 results.

set of coefficients from the ∆NL = 0.018 case. This set exhibits significantly better
accuracy at all wavenumbers when kh < 6, which is a highly desirable characteristic.

In this paper, nonlinear optimization is performed to second-order only. To opti-
mize the model to third-order, for example, the best results would be achieved by
continuation of the nonlinear expansion of the evaluation levels, i.e. the third-order
expansion for the layer interface could take the form

η = α2h + β2ζ +
(γ2ζ)2

h
. (3.22)

The coefficients γ would determined such that an optimal agreement with third-order
Stokes theory is obtained.

4. Numerical solutions

In this section some numerical solutions are obtained and compared with experimen-
tal data. The numerical solution procedure for the system of equations described in
the previous section is first discussed here. All spatial derivatives are finite-differenced
with centred differences. To keep the numerical truncation error consistent with
the order of the model equations, all first-order spatial differences are differenced
to fourth-order accuracy (∆x4, ∆y4), while second-order differences are taken to
second-order accuracy. The continuity equation (2.34) is solved using the fourth-
order predictor–corrector scheme as described in Wei et al . (1995) and Lynett & Liu
(2002), and will not be repeated here. The momentum equation (2.32) is also solved
with the predictor–corrector approach. Examining the x-momentum equation, the
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u1 time derivatives are grouped into a new variable U1, yielding

∂U1

∂t
+

1
2

∂u2
1

∂x
+

1
2

∂v2
1

∂x
+ g

∂ζ

∂x

+
∂

∂t

{
(κ1 − ζ)

[
η

(
∂2u2

∂x2 +
∂2v2

∂x∂y
− ∂2v1

∂x∂y

)
+

∂η

∂x

(
∂u2

∂x
+

∂v2

∂y
− ∂v1

∂y

)

+
∂2(hu2)

∂x2 +
∂2(hv2)
∂x∂y

+
∂2h

∂xt

]
+

κ2
1 − ζ2

2
∂2v1

∂x∂y
− ζ

∂ζ

∂x

∂v1

∂y

− ∂ζ

∂x

[
η

(
∂u2

∂x
+

∂v2

∂y
− ∂v1

∂y

)
+

∂(hu2)
∂x

+
∂(hv2)

∂y
+

∂h

∂t

]}

+
∂

∂x

[
∂ζ

∂t
(ζS1 + T1) + 1

2(κ2
1 − ζ2)

(
u1

∂S1

∂x
+ v1

∂S1

∂y

)

+ (κ1 − ζ)
(

u1
∂T1

∂x
+ v1

∂T1

∂y

)
+ 1

2(T1 + ζS1)2
]

= 0, (4.1)

where

U1 = u1 +
[
κ2

1 − 2κ1η − ζ2 + 2ζη

2
∂2u1

∂x2 +
(

η
∂ζ

∂x
+ ζ

∂η

∂x
− κ1

∂η

∂x
− ζ

∂ζ

∂x

)
∂u1

∂x

]
= 0.

(4.2)

This is the grouping procedure suggested by Wei et al . (1995) and modified to include
nonlinear terms by Lynett & Liu (2002). Equation (4.2) yields a diagonal matrix
system after finite differencing, and can be solved efficiently. The lower-layer velocity
is then calculated by

u2 +
{

κ2
2 + η2 − 2ηκ1

2
∂2u2

∂x2 + (κ2 − κ1)
∂2(hu2)

∂x2 + (η − κ1)
∂η

∂x

∂u2

∂x

}

= u1 +
{

(κ1 − η)2

2

(
∂2u1

∂x2 +
∂2v1

∂x∂y

)
+ (κ1 − η)

[
∂η

∂x

(
∂v2

∂y
− ∂u1

∂x
− ∂v1

∂y

)]

+
2ηκ1 − κ2

2 − η2

2
∂2v2

∂x∂y
+ (κ1 − κ2)

[
∂2(hv2)
∂x∂y

+
∂2h

∂xt

]}
, (4.3)

which is also diagonal, and is solved immediately after (4.2). Similar equations can
be derived for the v velocity components. No filtering or other artificial numerical
dissipation is used. As the equation form of the presented two-layer model is identical
to the O(µ2

0) Boussinesq-type equations, the numerical details, such as convergence
criteria, are identical to those given in Wei et al . (1995) and Lynett & Liu (2002).
For all of the numerical simulations presented in this paper, the lateral boundaries
are modelled as absorbing boundaries through the use of sponge layers. The sponge
layers are applied for both the one- and two-layer models as recommended by Kirby
et al . (1998) for their one-layer model, which is an approach founded on the method
presented by Israeli & Orszag (1981).

In general, the two-layer model requires twice the computational time of an iden-
tically configured one-layer simulation. Through one iteration of the predictor and
corrector procedure, the two-layer model needs about 1.75 times as much computa-
tional time as a one-layer model does. Due to the increased number of unknowns, the
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two-layer model takes 1.0–1.25 times as many iterations than the one-layer model
to converge. With the combination of these two factors, the doubled computational
time requirement is explained.

(a) Highly nonlinear solitary waves

As a first application of the two-layer model, the properties of a very large ampli-
tude solitary wave are analysed. The solitary wave represents a balance of nonlinear
and dispersive effects, thereby creating a wave of permanent form. When the ampli-
tude of a solitary wave is small, the characteristic length of the wave is relatively
large, and weakly nonlinear, weakly dispersive theories can describe the soliton very
well (e.g. Wei & Kirby 1995). However, as the amplitude increases, the wavelength
shortens, and therefore higher-order nonlinear and dispersive effects become more
important. This phenomenon is discussed in detail in Gobbi et al . (2000), where
it was shown that models with nonlinear accuracy into the deep-water regime are
required to accurately simulate highly nonlinear solitary waves. One of the examples
presented in their paper will be investigated again here, with the two-layer model
results included.

As an initial condition for the numerical model, the solitary-wave solution of Wei &
Kirby (1995), which is derived from the weakly nonlinear one-layer model, is inputted
into the domain. As this wave solution is not the solitary-wave solution of the two-
layer model, when the numerical simulation is started the soliton ‘sheds’ some waves,
as a tail. The soliton, which moves rapidly due to its large amplitude, eventually
leaves this tail far behind and reaches a steady form. Due to this initial fluctuation
in wave form, the amplitude of the initial condition is chosen based on trial and error
until a solitary wave with the desired amplitude is generated. This initial transient
state is also mentioned in Gobbi et al . (2000). For the solitary wave examined in
this section, with an amplitude of 0.65h, roughly 100 water depths of propagation
were needed to separate the solitary wave from its trailing tail. Additionally, for
this simulation, a grid length, ∆x, of 0.04h and a Courant number (∆t

√
gh)/∆x

of 0.5, where ∆t is the time-step were employed. The numerical solitary wave of
the two-layer model will be compared with the numerical waveform of the one-layer
model, the high-order model of Gobbi et al . (2000), and the exact solution to the
full boundary-value problem presented by Tanaka (1986).

Figure 6 shows a comparison of the free-surface profiles of the four different solu-
tions. The two-layer model matches the exact solution to a very high accuracy,
although there is some small error for x/h > 2, which is difficult to discern in
the figure. The two-layer model shows the best agreement with the exact solution as
compared with the one-layer model and the high-order model of Gobbi et al . (2000).
In figure 7, the vertical profiles of horizontal velocity under the wave crest for the
various models are shown. Near the seafloor, the two-layer model exhibits the best
agreement with the exact solution, although the difference between the two-layer
model and Gobbi et al .’s high-order model is small. Moving towards the free surface,
these two models converge in their predictions, showing equal errors in the maxi-
mum horizontal velocity. It is clear from these comparisons that the two-layer model
captures to a highly accurate degree the physics of a nonlinear solitary wave, with
agreement on a par with or slightly better than that found with the model of Gobbi
et al . (2000).
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Figure 6. Shape of solitary wave with amplitude ζ/h = 0.65. The exact solution is given by the
dashed line, the two-layer model by the solid line, the Gobbi et al . (2000) high-order model by
the dots, and the one-layer model by the dash-dotted line.

(b) Wave propagation over a submerged bar

In this section, wave interaction with a submerged bar is examined. The set-
up is taken from the experiments presented by Dingemans (1994), who recorded
free-surface time-series at numerous locations in front of and behind the obstacle.
The orientation of the bar is shown in the top subplot of figure 8. The wave, as
it approaches the bar, is a long wave, with a kh = 0.7 (wavelength of 7.7 m in
0.86 m of water). This incident wave corresponds to Case A in Dingemans (1994).
As the wave shoals, it steepens and nonlinear transfers create superharmonics. The
superharmonics, while still shallow or intermediate water waves on top of the bar,
become deep-water waves as they enter the deeper water behind. As discussed in
Woo & Liu (2001), significant wave energy (ca. 75% of the peak spectral amplitude)
is present at kh ≈ 4 in the region behind the bar. For this reason, Boussinesq-
type models (one-layer O(µ2

0) models), whose linear dispersion accuracy limit is near
kh ≈ 3, do not correctly predict the wavefield behind the bar.

The numerical simulation results for this case are shown in figure 8, where ∆x =
0.10 m and ∆t = 0.0189 s. Time-series are taken at the four locations depicted in the
top subplot, and both the one- and two-layer models are compared with experimental
data. The column on the left shows the one-layer results and the column on the right
shows the two-layer results. On top of the bar, at location #1, both models are in
agreement, and the two-layer model shows no benefit. This is expected, as all of the
dominant wave components at this location have kh-values less than 2.0. However
as the wave components progress into deeper water, the one-layer model becomes
inaccurate. This is evident at locations #2–#4, where the one-layer model deviates
from the experimental results. The two-layer model, on the other hand, shows its
strength and predicts the wavefield excellently.
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Figure 7. Vertical profile of horizontal velocity under the crest of a solitary wave with amplitude
ζ/h = 0.65. The exact solution is given by the dashed line, the two-layer model by the solid
line, the Gobbi et al . (2000) high-order model by the dots, and the one-layer model by the
dash-dotted line.

A second case was presented in Dingemans (1994), that for a shorter incident
wave travelling over the same submerged bar as discussed above. This experimental
dataset, named Case C in Dingemans (1994), employs an intermediate depth wave
with a kh = 1.8 (wavelength of 3.0 m in 0.86 m of water). As the wave passes over
the top of the bar, energy is transferred into the second harmonic, with only a
small amount of energy in the third harmonic behind the step. The second harmonic
has a kh = 6.3 in the 80 cm water depth behind the step, and certainly it is not
expected that the one-layer model should correctly predict the wavefield in this
region. Figure 9 proves this expectation, while the two-layer model captures the
free surface extremely well. This particular case also exhibits the strength of the
two-layer model over high-order Boussinesq-type models with dispersion properties
equivalent to a [4, 4] Padé approximation of the dispersion relation. For the kh = 6.3
component behind the step, the [4, 4] Padé approximation predicts a celerity ca. 1%
faster than that given by linear potential theory. Between locations #3 and #4 in
figure 9, this kh = 6.3 wave will have travelled more than five wavelengths, equating
to a minor arrival-time error in the vicinity of 5%. These phase errors are evident in
the numerical results given by Gobbi & Kirby (1999), who compared a high-order
model ([4, 4] Padé representation of the dispersion relation) with experimental data
very similar to that given in Dingemans (1994) and compared here. As the two-layer
model presented in this paper has a 0.1% celerity error at kh = 6.3, there are no
noticeable phase differences in figure 9.

(c) Wave generation by submarine landslide

The derivation presented in this paper did not make the simplifying assumption of
a constant seafloor elevation in time. This will allow for the study of waves generated
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Figure 8. Comparison between numerical (solid lines) and experimental (dots) free-surface dis-
placements for Case A of Dingemans (1994), where the experimental set-up and gauge locations
are shown in the top subplot. The column on the left shows the numerical results from the
one-layer model, the right column shows the two-layer results. Time-series locations are indi-
cated in the upper right of each subplot, corresponding to the gauge locations shown in the top
subplot.

by seafloor movements, such as submarine landslides and slumps. Using the one-
layer-model equations to study wave creation by submarine seafloor movements has
been examined previously by the authors (Lynett & Liu 2002). In that work, a deep-
water accuracy limitation, in regard to accurate prediction of the generated waves,
of the one-layer model was determined. Focusing on a submarine slide mass that
is symmetric about its centre point in the horizontal plane, a single length-scale
of the slide mass can be given, ls, the horizontal length of the slide. For the one-
layer model, accuracy is expected as long as ls/hc > 7, where hc is the water depth
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Figure 9. Comparison for Case C of Dingemans (1994),
where the figure notation is as in figure 8.

above the centre point of the slide mass. This accuracy limitation was found through
comparison of the one-layer model with a fully nonlinear potential flow calculation.
One of the comparisons presented in the paper by Lynett & Liu (2002) (specifically,
§ 7, ‘Limitations of the depth-integrated model’) is re-examined here with the present
two-layer model.

The scenario to be recreated in this section involves a non-deforming mass trans-
lating down a planar slope in solid body motion. The mathematical description of the
slide evolution can be found in Lynett & Liu (2002, fig. 4) and will not be repeated
here. This particular problem, already simulated using potential flow theory and a
one-layer model, is calculated again with the two-layer equations, and the results are
shown in figure 10. The top subplot of this figure shows the location of the slide mass
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Figure 10. Numerical simulation of a submarine landslide. The top plot shows the location of
the slide mass at the four times corresponding to the free-surface snapshots in the four lower
plots. Free-surface snapshots for potential flow theory (dots), one-layer model (dashed line), and
two-layer model (solid line) are given.

at four different times, which correspond to the free-surface snapshots shown in the
lower four subplots. Given on each of these four plots is the ls/hc ratio at the time
the snapshot is taken. Note that ls is constant in time, but as the slide moves into
deeper water, hc increases. For the times t1 and t2, all three models agree, and the
depth-integrated models are still in the range of accuracy. As can be seen by time t3,
the one-layer model begins to diverge from the potential flow results, indicating that
the slide is in water too deep for this model to handle accurately. At this time, the
two-layer model is still in excellent agreement with potential theory. By time t4, the
two-layer model is beginning to differ from potential theory. Although the rigorous
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Figure 11. Numerical snapshot from a two-layer, 2HD shoal simulation, where the location of
the shoal is denoted by the dashed contours. The snapshot is taken 32 s into the simulation, or
roughly 24.6 wave periods.

determination of the accuracy limit for the one-layer model made in Lynett & Liu
will not be repeated here for the two-layer model, it is clear that the two-layer model
gives more accurate results into deeper water than the one-layer model does.

(d) 2HD wave evolution over a shoal

One of the most frequently studied 2HD problems is that of wave interaction with
a submerged elliptic shoal. Experiments by Berkoff et al . (1982), Vincent & Briggs
(1989) and others have been used repeatedly to validate mild-slope equations models
(e.g. Liu et al . 1985) as well as Boussinesq-type models (e.g. Chen et al . 2000). The
submerged shoal is a particularly desirable 2HD validation problem because the
wavefield behind the shoal can vary greatly in both the along-channel and cross-
channel directions, indicating that the 2HD effects are very important.

In this paper, one of the experiments of Vincent & Briggs (1989) will be numerically
simulated. The elliptic shoal is 6.1 m long in the x-direction and 7.92 m wide in the
y-direction, with a maximum height of 30.5 cm in 45.7 cm of water. The precise math-
ematical description of the shoal can be found in Vincent & Briggs. A large variety
of incident wave conditions was studied, ranging from non-breaking monochromatic
waves to breaking directional spectra. A non-breaking monochromatic incident con-
dition is examined in this paper. The incident wave has a height of 4.8 cm and a
period of 1.3 s (kh = 1.27). The incident wave height was chosen based on agreement
with experimental data taken nearest to the wavemaker, which varied significantly
from the experimental target wave height of 5.5 cm. The numerical parameters of the
simulations are ∆x = 0.056 m and ∆t = 0.026 s. A snapshot of the quasi-steady state
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Figure 12. Difference between one- and two-layer numerical simulations at a time of 32 s.
The location of the shoal is denoted by the dashed contours.

free surface, taken 32 s into the simulation, is shown in figure 11. From this image,
the processes of wave transformation can be explained. The waves approach from
the left and, in passing over the shoal, the wavefront slows in the shallower water,
and the wave crest narrows and steepens. On the lee of the shoal, refracting wave-
fronts meet, creating a free-surface elevation maximum. Oblique wave interactions
dominate the wavefield behind the shoal, creating an irregular sea surface.

Both one- and two-layer simulations were performed, and the difference in the
free-surface elevation predicted by the models at a time of 32 s is shown in figure 12.
This instantaneous difference shows that the wavefields predicted by the models
behind the shoal do not agree particularly well. Differences in the models are in the
range of ∓1.25 cm, in an area where the wave has an amplitude of 4–5 cm. As in the
one-horizontal-dimension problem of § 4 a, it is expected that the higher-frequency
waves generated due to nonlinear transfers on the shoal are not predicted accurately
by the one-layer model behind the shoal. Figure 13 proves this expectation. First,
however, given in figure 13b) is the experimental wave height along the centreline of
the channel (y = 0) plotted with the one- and two-layer values. The trends of the
experimental and numerical data are very similar, with small but clear differences
between the one- and two-layer models behind the shoal.

Parts (c) and (d) of figures 13 are the first and second harmonic amplitudes,
respectively, from the one- and two-layer simulations. The two models agree closely
on first harmonic amplitudes, but do exhibit 0.25 cm differences behind the shoal.
Figure 13c shows very clearly the focusing of wave energy behind the shoal. The
refracting wavefronts meet and create a peak height near x = 10 m, after which the
wave energy spreads laterally, decreasing the first harmonic amplitude. Looking at
the second harmonic amplitudes, the results of the two models diverge quickly behind
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Figure 13. Characteristics of the elliptic shoal case, along the channel centreline (y = 0). (a) The
centreline depth profile. (b) The root-mean-square wave height of the Vincent & Briggs (1989)
experiments (dot-dashed line, where dots represent measurement locations), one-layer model
results (dashed line), and two-layer model (solid line). (c) First and (d) second harmonic ampli-
tudes, respectively, for the one- and two-layer models.

the shoal. In the deep water behind the shoal, this second harmonic has kh = 4.35,
and therefore the one-layer model will not be able to capture properly the physical
properties of this wave component. This fact also explains the differences shown in
figure 12, where the errors in the one-layer model are directly attributable to the
incorrect phase-speed prediction of the second harmonic. Therefore, for this type of
problem, the accuracy of the one-layer model correlates directly to the magnitude
of energy transfer into the second harmonic. The two-layer model will capture the
second harmonic properly, although if energy transfer into the third harmonic (kh =
9.8 in the water behind the shoal) is significant, even this model will have errors.
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Table 3. Comparison of different aspects of the high-order
models of Schäffer & Madsen (1995) with truncation error [O(ε0µ2

0, µ
4
0)]

(A, flat bottom equations of Gobbi et al . (2000) [O(µ6
0)]; B, Madsen et al . (2002) [O(µ10

0 )];
C, Madsen et al . (2003) [O(µ6

0)]; D, the two-layer model presented here [O(µ2
0µ

2
1, µ

4
2)].)

kh at 1% kh at 5%
model error in c error in ζ(1)

Schäffer & Madsen (1995) 6 1.2a

A 6 3.5
B 40 35
C 10 10
D 6.5 6.5

no. of eqns no. of gradient operations
model [no. of vector eqns] [# > 3rd order]

Schäffer & Madsen (1995) 2 [1] 41 [0]a

A 2 [1] 42 [5]
B 6 [3] 98 [12]
C 6 [3] 44 [0]
D 3 [2] 42 [0]

aData taken from Madsen & Schäffer (1998) [O(ε20µ2
0, µ

4
0)].

The amplitude of the third harmonic for the case analysed above is less than 0.2 cm
in the region behind the shoal.

5. Comparisons with existing high-order approaches

As there are a number of high-order, Boussinesq-like approaches in the published
literature, it is important to discuss how this model compares. A brief overview of
the existing models is given now. One of the first high-order derivations was that of
Schäffer & Madsen (1995), who combined the operator manipulation method (Mad-
sen & Sørensen 1992) with Nwogu’s (1993) derivation to create a two-equation model
(mass and vector momentum), while only containing third-order spatial derivatives.
A limitation of this approach is that, due to the operator manipulation, a velocity
profile consistent with the final equations is not given. Continuing along a similar
path, Gobbi et al . (2000), expanded Nwogu’s approach to the next order, creat-
ing a two-equation model with fifth-order spatial derivatives. A novel approach to
Boussinesq models was presented by Agnon et al . (1999), whereby the boundary con-
ditions are satisfied exactly, and the Laplace equation is solved through expansions.
This model, extended and enhanced in Madsen et al . (2002), solves six equations
(three vector equations) and distinguishes itself from other models in its extremely
accurate deep-water, nonlinear behaviour. Madsen et al . (2003) further analysed this
approach, and described a version including only third-order spatial derivatives.

In an attempt to discriminate the advantages and disadvantages of these models as
well as the two-layer model, four items are compared: kh at 1% error in phase speed,
kh at 5% error in the self–self, second-order nonlinear (superharmonic) interaction,
number of equations, and total number of gradient operations in the equations. These
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items, given in table 3, are meant to yield a very simple comparison of the theoretical
and practical aspects of different high-order models.

All of the values shown in table 3 are taken directly from the corresponding papers.
For Madsen et al . (2002), results given above are for their σ = −0.2 and eqns (2),
(15), (17) and (22b). For Madsen et al . (2003), results given above are for σ = −0.5,
given in table 2 in their appendix. The equations for Madsen et al . (2003) are similar
to Madsen et al . (2002), except with all derivatives higher than third-order truncated.
Note that, when counting gradient operations, a first-order derivative counts as one,
for example, and a fifth-order derivative counts as five. This count is performed
on the final model equations, as presented by each author. Of course, many of the
derivatives are repetitive, and would be stored in memory rather than recalculated
in a numerical model; thus one should not look too deeply into the meaning of these
numbers. The number of vector equations and spatial gradients greater than third-
order are included in brackets as an indication of additional work for 2HD problems,
as well as the numerical stencil size. Evident from table 3 is that accuracy is closely
related to required effort, although the trend is not necessarily linear. The approaches
of Madsen et al . have linear and first-order nonlinear accuracy into the deepest water,
as well as the best second-order nonlinear accuracy, not shown here. The models
of Gobbi et al . (2000) and Madsen et al . (2002) are likely to require significant
additional effort to go from 1HD to 2HD, while the computational requirements
of Madsen et al . (2003) and the two-layer model would possibly be very similar.
Naturally, the method of numerical solving can greatly affect these judgements.

6. Conclusions

A model for the transformation of highly nonlinear and dispersive waves is derived.
The model uses two quadratic polynomials to approximate the vertical flow field,
matched along an interface. Through linear and nonlinear optimization of the inter-
face and velocity evaluation locations, it is shown that the two-layer model exhibits
accurate linear and nonlinear characteristics up to kh ≈ 6.5. This is an extension to
higher kh over existing O(µ4

0) truncation error Boussinesq-type models, while main-
taining the maximum order of differentiation at three. Owing to this maximum order
of differentiation, a tractable numerical algorithm is developed for the general 2HD
problem, employing a well-studied predictor–corrector scheme. A number of 1HD and
2HD simulations are given, and the presented model shows its strength by accurately
capturing the propagation of highly nonlinear and deep-water waves. The elliptic-
shoal simulations presented represent the first attempt at high-order modelling of a
2HD problem.

It is possible that, for certain situations, the two-layer model would not be adequate
in regard to simulating a correct picture of the wavefield. One example of this would
be for the 2HD-shoal problem discussed in § 4 d. If the incident wave had a greater
amplitude, perhaps even breaking, the third harmonic amplitude (kh = 9.8 behind
the shoal) would be significant. For these types of scenarios, an optimized three-layer
equation model with a wave breaking scheme could be an option, and the authors
are currently developing this model.

The research reported here is partly supported by grants from National Science Foundation
(CMS-9528013, CTS-9808542 and CMS 9908392).
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Appendix A. Linear-dispersion properties

The linearized one-dimensional equations in a constant depth can be written in the
following dimensional form:

∂ζ

∂t
+ δ1h

∂u1

∂x
+ δ2h

∂u2

∂x
+ δ3h

3 ∂3u1

∂x3 + δ4h
3 ∂3u2

∂x3 = 0, (A 1)

∂u1

∂t
+ g

∂ζ

∂x
+ δ5h

2 ∂3u1

∂x2t
+ δ6h

2 ∂3u2

∂x2t
= 0, (A 2)

u1 − u2 − δ7h
2 ∂2u1

∂x2 − δ8h
2 ∂2u2

∂x2 = 0, (A 3)

where

δ1 = −α2, δ2 = 1 + α2, δ3 = 1
6(−2α3

2 + 6α1α
2
2 − 3α2

1α2),

δ4 = 1
6(2α3

2 − 6α1α
2
2 − 6α1α2 + 3α2

3α2 + 6α3α2 + 3α2
3 + 6α3 + 2),

δ5 = 1
2α2

1 − α1α2, δ6 = α1α2 + α1, δ7 = −1
2(α2

1 + α2
2) + α1α2,

δ8 = 1
2(α2

2 + α2
3) − α1α2 + α3 − α1.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A 4)

(a) Linear dispersion relation

Substituting the solution form (3.6) into (A 1)–(A 3) yields the linear dispersion
relation:

w2 =
k2gh[1 + (kh)2N1 + (kh)4N2]

1 + (kh)2D1 + (kh)4D2
, (A 5)

where
N1 = δ2δ7 − δ1δ8 − δ3 − δ4, N2 = δ3δ8 − δ4δ7,

D1 = −δ8 − δ5 − δ6, D2 = δ5δ8 − δ6δ7.

}
(A 6)

(b) Derivation of linear shoaling gradient

The method presented in Schäffer & Madsen (1995) was applied to the two-layer
model. The calculations were performed on a computer using Mathematica, and
the resulting expressions are too tedious to be given here. However, the general
solution method is described now. Introducing the solutions

ζ = a(x) eiθ, u1 = [u(0)
1 (x)+iû(0)

1x (x)] eiθ, u2 = [u(0)
2 (x)+iû(0)

2x (x)] eiθ, (A 7)

where
θ = ωt −

∫
k(x) dx

and (x) indicates variables that are slowly varying quantities of x. Note the dis-
tinction between û = O(hx) and u, the derivative of u

(0)
n . The above solutions are

substituted into the linear governing equations, and are truncated to include only
up to first derivatives of the slowly varying quantities, i.e. terms such as h2

x, hxkx,
etc., are truncated. To first order (no derivatives of the slowly varying quantities)
the system of equations yields the dispersion relation given in Appendix A a.
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Working with the second-order components, through numerous substitutions, one
can construct a single equation in the form:

S1
ax

a
+ S2

kx

k
+ S3

hx

h
= 0. (A 8)

Differentiation of the dispersion relation gives

kx

k
= −S4

hx

h
, (A 9)

which allows us to write the shoaling equation

ax

a
= Ax

hx

h
, (A 10)

where
Ax =

S2S4 − S3

S1
. (A 11)

Again, note that the variables S1, S2, S3 and S4 are determined using symbolic-
mathematical software and will not be given here.

(c) Second-order nonlinear interactions

Now we find the nonlinear corrections to the linear problem. The two-layer equa-
tions must now be truncated to include quadratic nonlinear terms, as well as linear
terms. Collecting the O(ε2) terms from the substitution of the assumed steady wave,
(3.6), into the nonlinear-equation system will yield an equation system in the general
form ⎡

⎣b11 b12 b13
b21 b22 b23
0 b32 b33

⎤
⎦

⎛
⎜⎝

ζ(1)

u
(1)
1

u
(1)
2

⎞
⎟⎠ =

⎡
⎣R1

R2
R3

⎤
⎦ ,

where b11, . . . , b33 are functions of the linear δ coefficients, and R1, . . . , R3 are tedious
functions of the α and β parameters.

To find the sub- and super-harmonic amplitudes for the bichromatic wave group
problem, the procedure is the same as described above for the steady wave (sin-
gle, first-order harmonic) problem. The assumed solution (3.18) is substituted
into the two-layer equation system. For each of the forced second-order solutions,
[(k1 − k2)x − (w1 − w2)t] and [(k1 + k2)x + (w1 − w2)t], the matrix system is writ-
ten in the same form as for the steady wave problem. The expressions for the non-
linear harmonics are too tedious to include in the published manuscript, but can be
obtained through the first author via email at plynett@civil.tamu.edu.

Appendix B. Heuristic analysis of truncation error

In this section, the truncation error of the two-layer model equations is examined,
and compared with those of existing one-layer depth-integrated model equations.
Additionally, minimization of the two-layer truncation error yields an estimate of the
layer interface location, and this value can be compared with the interface location
determined in § 3 f . It is noted that the form of the truncation error in the present
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Figure 14. Comparison of the truncation errors for three different models: µ4
0 Boussinesq equa-

tions (dash-dashed line), µ6
0 high-order Boussinesq equations (dot-dashed line), 0.38µ4

0 minimized
error for two-layer equations (solid line).

model equations is a direct result of the scaling used to non-dimensionalize the Euler
equations. From (2.32)–(2.34), the overall accuracy of the present model equations, or
the largest truncation errors of the three equations, can be expressed as O(µ2

0µ
2
1, µ

4
2).

The heuristic approach taken here is to look at this truncation error as a finite value,
not an order, and use this value to estimate the accuracy of the model compared with
the O(µ2

0) Boussinesq equations (Nwogu 1993) and the high-order, O(µ4
0) Boussinesq-

type equations (Gobbi et al . 2000).
The truncation error of the present two-layer model equations has an upper bound

of O(µ4
0) when either d1 or d2 is equal to h0, which corresponds to the truncation

error of a traditional (one-layer) Boussinesq model. The lower bound occurs when
µ2

0µ
2
1 = µ4

2, or d1h0 = d2
2, which gives d1 = 0.38h0, d2 = 0.62h0. We expect that the

two-layer model will yield a more accurate result than the one-layer model, due to
the fact that the error of approximation for the two-layer model is smaller. The
truncation error values for these two models, as well as the high-order Boussinesq-
type equations that have a truncation error of O(µ6

0), are shown in figure 14. This
plot indicates that, over the range µ0 < 0.6, the high-order Boussinesq model should
yield results slightly more accurate than those of the two-layer model. Over the
range µ0 > 0.6, however, the two-layer model should be significantly more accurate
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than the high-order model. In fact, compared with a single-layer model of any order,
O(µn

0 ), the two-layer model should achieve higher accuracy as µ0 approaches 1.
In the present two-layer model, the truncation error tells us that µ2

0µ
2
1 and µ4

2
should be small compared with the included terms, which, due to the appearance of
both O(µ2

0) and O(µ2
1) in the momentum equations, still requires that both O(µ2

0)
and O(µ2

1) � 1. The restriction of O(µ2
0) � 1 could be avoided by including O(µ2

0µ
2
1)

terms, thereby making the truncation error of the model O(µ2
0µ

4
1, µ

4
1, µ

4
2). However,

inclusion of O(µ2
0µ

2
1) terms yields a model with fifth order in space derivatives. This

is unacceptable for this particular derivation, whose primary goal is to create a high-
order accurate model without requiring high-order derivatives.
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Schäffer, H. A. 1996 Second-order wavemaker theory for irregular wave. Ocean Engng 23, 47–88.
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