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A mathematical model is derived to describe the generation and propagation of
water waves by a submarine landslide. The model consists of a depth-integrated
continuity equation and momentum equations, in which the ground movement is
the forcing function. These equations include full nonlinear, but weak frequency-
dispersion, e¬ects. The model is capable of describing wave propagation from rela-
tively deep water to shallow water. Simpli­ ed models for waves generated by small
sea®oor displacement or creeping ground movement are also presented. A numeri-
cal algorithm is developed for the general fully nonlinear model. Comparisons are
made with a boundary integral equation method model, and a deep-water limit for
the depth-integrated model is determined in terms of a characteristic side length of
the submarine mass. The importance of nonlinearity and frequency dispersion in the
wave-generation region and on the shoreline movement is discussed.
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1. Introduction

In recent years, signi­ cant advances have been made in developing mathematical
models to describe the entire process of generation, propagation and run-up of a
tsunami event (e.g. Yeh et al . 1996; Geist 1998). These models are based primarily
on the shallow-water wave equations and are adequate for tsunamis generated by
seismic sea®oor deformation. Since the duration of the seismic sea®oor deformation
is very short, the water-surface response is almost instantaneous and the initial water-
surface pro­ le mimics the ­ nal sea®oor deformation. The typical wavelength of this
type of tsunami ranges from 20 to 100 km. Therefore, frequency dispersion can be
ignored in the generation region. The nonlinearity is also usually not important in the
generation region, because the initial wave amplitude is relatively small compared
to the wavelength and the water depth. However, the frequency dispersion becomes
important when a tsunami propagates for a long distance. Nonlinearity could also
dominate as a tsunami enters the run-up phase. Consequently, a complete model that
can describe the entire process of tsunami generation, evolution and run-up needs to
consider both frequency dispersion and nonlinearity.

Tsunamis are also generated by other mechanisms. For example, submarine land-
slides have been documented as one of many possible sources for several destructive
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tsunamis (Moore & Moore 1984; von Huene et al . 1989; Jiang & LeBlond 1992; Tap-
pin et al . 1999; Keating & McGuire 2002). On 29 November 1975, a landslide was trig-
gered by a 7.2-magnitude earthquake along the southeast coast of Hawaii. A 60 km
stretch of Kilauea’s south coast subsided 3.5 m and moved seaward 8 m. This land-
slide generated a local tsunami with a maximum run-up height of 16 m at Keauhou
(Cox & Morgan 1977). More recently, the devastating Papua New Guinea tsunami
in 1998 is thought to have been caused by a submarine landslide (Tappin et al .
1999, 2001; Keating & McGuire 2002). In terms of tsunami-generation mechanisms,
two signi­ cant di¬erences exist between submarine-landslide and coseismic sea®oor
deformation. First, the duration of a landslide is much longer and is in the order
of magnitude of several minutes. Hence the time-history of the sea®oor movement
will a¬ect the characteristics of the generated wave and needs to be included in the
model. Secondly, the e¬ective size of the landslide region is usually much smaller than
the coseismic sea®oor-deformation zone. Consequently, the typical wavelength of the
tsunamis generated by a submarine landslide is also shorter, i.e. ca. 1{10 km. There-
fore, the frequency dispersion could be important in the wave-generation region.
The existing numerical models based on shallow-water wave equations may not be
suitable for modelling the entire process of submarine-landslide-generated tsunami
(e.g. Raney & Butler 1976; Harbitz et al . 1993).

In this paper, we shall present a new model describing the generation and propaga-
tion of tsunamis by a submarine landslide. In this general model, only the assumption
of weak frequency dispersion is employed, i.e. the ratio of water depth to wavelength
is small or O( · 2) ½ 1. Until the past decade, weakly dispersive models were formu-
lated in terms of a depth-averaged velocity (e.g. Peregrine 1967). Recent work has
clearly demonstrated that modi­ cations to the frequency dispersion terms (Madsen
& Sorensen 1992) or expression of the model equations in terms of an arbitrary-
level velocity (Nwogu 1993; Liu 1994) can extend the validity of the linear-dispersion
properties into deeper water. The general guideline for dispersive properties is that
the `extended’ versions of the depth-integrated equations are valid for wavelengths
greater than two water depths, whereas the depth-averaged model is valid for lengths
greater than ­ ve water depths (e.g. Nwogu 1993). Moreover, in the model presented
in this paper, the full nonlinear e¬ect is included, i.e. the ratio of wave amplitude to
water depth is of order one or " = O(1). Therefore, this new model is more general
than that developed by Liu & Earickson (1983), in which the Boussinesq approx-
imation, i.e. O( · 2) = O(") ½ 1, was used. In the special case where the sea®oor
is stationary, the new model reduces to the model for fully nonlinear and weakly
dispersive waves propagating over a varying water depth (e.g. Liu 1994; Madsen &
Sch�a¬er 1998). The model is applicable for both the impulsive slide movement and
creeping slide movement. In the latter case, the time duration for the slide is much
longer than the characteristic wave period.

This paper is organized as follows. Governing equations and boundary conditions
for ®ow motions generated by a ground movement are summarized in the next section.
The derivation of approximate two-dimensional depth-integrated governing equations
follows. The general model equations are then simpli­ ed for special cases. A numerical
algorithm is presented to solve the general mathematical model. The numerical model
is tested using available experimental data (e.g. Hammack 1973) for one-dimensional
situations. Employing a boundary integral equation model (BIEM), which solves
for potential ®ow in the vertical plane, a deep-water limit for waves generated by
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Figure 1. Basic formulational set-up.

submarine slides is determined for the depth-integrated model. The importance of
nonlinearity and frequency dispersion is inferred through numerical simulation of a
large number of di¬erent physical set-ups.

2. Governing equations and boundary conditions

As shown in ­ gure 1, ± 0(x0; y0; t0) denotes the free-surface displacement of a wave
train propagating in the water depth h0(x0; y0; t0). Introducing the characteristic water
depth h0 as the vertical length-scale, the characteristic length of the submarine slide
region `0 as the horizontal length-scale, `0=

p
gh0 as the time-scale, and the charac-

teristic wave amplitude a0 as the scale of wave motion, we can de­ ne the following
dimensionless variables,

(x; y) =
(x0; y0)

`0
; z =

z0

h0
; t =

p
gh0t0

`0
;

h =
h0

h0
; ± =

± 0

a0
; p =

p0

» ga0

and

(u; v) =
(u0; v0)

"
p

gh0

; w =
w0

("=· )
p

gh0

; (2.1)

in which (u; v) represents the horizontal velocity components, w the vertical velocity
component, and p the pressure. Two dimensionless parameters have been introduced
in (2.1), which are

" =
a0

h0
; · =

h0

`0
: (2.2)

Assuming that the viscous e¬ects are insigni­ cant, the wave motion can be described
by the continuity equation and Euler’s equations, i.e.

· 2r ¢ u + wz = 0; (2.3)

ut + "u ¢ ru +
"

· 2
wuz = ¡ rp; (2.4)

"wt + "2u ¢ rw +
"2

· 2
wwz = ¡ "pz ¡ 1; (2.5)
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where u = (u; v) denotes the horizontal velocity vector, r = (@=@x; @=@y) the
horizontal gradient vector, and the subscript the partial derivative.

On the free surface, z = "± (x; y; t), the usual kinematic and dynamic boundary
conditions apply,

w = · 2( ± t + "u ¢ r ± ) on z = "± ; (2.6 a)

p = 0: (2.6 b)

Along the sea®oor, z = ¡ h, the kinematic boundary condition requires

w + · 2u ¢ rh +
· 2

"
ht = 0 on z = ¡ h: (2.7)

For later use, we note here that the depth-integrated continuity equation can be
obtained by integrating (2.3) from z = ¡ h to z = "± . After applying the boundary
conditions (2.6), the resulting equation reads

r ¢
·Z "±

¡h

u dz

¸
+

1

"
Ht = 0; (2.8)

where

H = "± + h: (2.9)

We remark here that (2.8) is exact.

3. Approximate two-dimensional governing equations

The three-dimensional boundary-value problem described in the previous section
will be approximated and projected onto a two-dimensional horizontal plane. In this
section, the nonlinearity is assumed to be of O(1). However, the frequency dispersion
is assumed to be weak, i.e.

O( · 2) ½ 1: (3.1)

Using · 2 as the small parameter, a perturbation analysis is performed on the
primitive governing equations. The complete derivation is given in Appendix A. The
resulting approximate continuity equation is

1

"
ht + ± t + r ¢ (Hu ¬ )

¡ · 2r ¢
½

H

·
( 1

6 ("2 ± 2 ¡ "± h + h2) ¡ 1
2z2

¬ )r(r ¢ u¬ )

+ ( 1
2
("± ¡ h) ¡ z ¬ )r

µ
r ¢ (hu ¬ ) +

ht

"

¶¸¾
= O( · 4):

(3.2)

Equation (3.2) is one of three governing equations for ± and u ¬ . The other two
equations come from the horizontal momentum equation (2.4) and are given in vector
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form as

u¬ t + "u¬ ¢ ru ¬ + r ±

+ · 2 @

@t

½
1
2
z2

¬ r(r ¢ u ¬ ) + z ¬ r
·
r ¢ (hu ¬ ) +

ht

"

¸¾

+ "· 2

½·
r ¢ (hu ¬ ) +

ht

"

¸
r

·
r ¢ (hu ¬ ) +

ht

"

¸

¡ r
·
±

µ
r ¢ (hu ¬ )t +

htt

"

¶¸
+ (u¬ ¢ rz ¬ )r

·
r ¢ (hu ¬ ) +

ht

"

¸

+ z ¬ r
·
u¬ ¢ r

µ
r ¢ (hu¬ ) +

ht

"

¶¸
+ z ¬ (u ¬ ¢ rz ¬ )r(r ¢ u ¬ )

+ 1
2z2

¬ r[u ¬ ¢ r(r ¢ u ¬ )]

¾

+ "2 · 2r
½

¡ 1
2 ± 2r ¢ u¬ t ¡ ± u¬ ¢ r

·
r ¢ (hu¬ ) +

ht

"

¸
+ ±

·
r ¢ (hu ¬ ) +

ht

"

¸
r ¢ u ¬

¾

+ "3 · 2rf 1
2 ± 2[(r ¢ u¬ )2 ¡ u ¬ ¢ r(r ¢ u ¬ )]g = O( · 4): (3.3)

Equations (3.2) and (3.3) are the coupled governing equations, written in terms of
u¬ and ± , for fully nonlinear weakly dispersive waves generated by a sea®oor move-
ment. We reiterate here that u¬ is evaluated at z = z ¬ (x; y; t), which is a function
of time. The choice of z ¬ is made based on the linear frequency-dispersion charac-
teristics of the governing equations (e.g. Nwogu 1993; Chen & Liu 1995). Assuming
a stationary sea®oor, in order to extend the applicability of the governing equations
to relatively deep water (or a short wave), z ¬ is recommended to be evaluated as
z ¬ = ¡ 0:531h. In the following analysis, the same relationship is employed. These
model equations will be referred to as FNL-EXT, for fully nonlinear `extended’ equa-
tions.

Up to this point, the time-scale of the sea®oor movement is assumed to be in the
same order of magnitude as the typical period of generated water wave, tw = `0=

p
gh0

as given in (2.1). When the ground movement is creeping in nature, the time-scale
of sea®oor movement, tc, could be larger than tw. The only scaling parameter that
is directly a¬ected by the time-scale of the sea®oor movement is the characteristic
amplitude of the wave motion. After introducing the time-scale tc into the time
derivatives of h in the continuity equation (3.2), along with a characteristic change
in water depth ¢h, the coe¯ cient in front of ht becomes

¯

"

tw

tc
;

where ¯ = ¢h=h0. To maintain the conservation of mass, the above parameter must
be of order one. Thus

" = ¯
tw

tc
=

¯ l0

tc

p
gh0

: (3.4)

The above relationship can be interpreted in the following way. During the creeping
ground movement, over the time period t < tc the generated wave has propagated a
distance t

p
gh0. The total volume of the sea®oor displacement, normalized by h0, is

¯ l0(t=tc), which should be the same as the volume of water underneath the generated
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wave crest, i.e. "t
p

gh0. Therefore, over the ground-movement period, t < tc, the
wave amplitude can be estimated by (3.4). Consequently, nonlinear e¬ects become
important only if " de­ ned in (3.4) is O(1). Since, by the de­ nition of a creeping
slide, the value l0=(tc

p
gh0) is always less than one, fully nonlinear e¬ects will be

important for only the largest slides. The same conclusion was reached by Hammack
(1973), using a di¬erent approach. The importance of the fully nonlinear e¬ect when
modelling creeping ground movements will be tested in x8.

4. Limiting cases

In this section, the general model is further simpli­ ed for di¬erent physical conditions.

(a) Weakly nonlinear waves

In many situations, the sea®oor displacement is relatively small in comparison
with the local depth, and the sea®oor movement can be approximated as

h(x; y; t) = h0(x; y) + ¯ ·h(x; y; t); (4.1)

in which ¯ is considered to be small. In other words, the maximum sea®oor displace-
ment is much smaller than the characteristic water depth. Since the free-surface dis-
placement is directly proportional to the sea®oor displacement, i.e. O("± ) = O( ¯ ·h), or
much less than the sea®oor displacement in the case of creeping ground movements,
we can further simplify the governing equations derived in the previous section by
allowing

O(") = O( ¯ ) = O( · 2) ½ 1; (4.2)

which is the Boussinesq approximation. Thus the continuity equation (3.2) can be
reduced to

± t + r ¢ (Hu¬ ) +
¯

"
·ht

¡ · 2r ¢
½

h0

·
( 1

6
h2

0 ¡ 1
2
z2

¬ )r(r ¢ u ¬ ) ¡ ( 1
2
h0 + z ¬ )r

µ
r ¢ (h0u¬ ) +

¯

"
·ht

¶¸¾

= O( · 4; · 2"; ¯ · 2):
(4.3)

The momentum equation becomes

u ¬ t + "u ¬ ¢ ru ¬ + r ± + · 2 @

@t

½
1
2z2

¬ r(r ¢ u ¬ ) + z ¬ r
·
r ¢ (h0u ¬ ) +

¯

"
·ht

¸¾

= O( · 4; "· 2; ¯ · 2): (4.4)

These model equations will be referred to as WNL-EXT, for weakly nonlinear
`extended’ equations. The linear version of the above will also be used in the following
analysis, and will be referred to as L-EXT, for linear `extended’ equations.

It is also possible to express the approximate continuity and momentum equations
in terms of a depth-averaged velocity. The depth-averaged equations can be derived
using the same method presented in Appendix A. One version of the depth-averaged
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equations will be employed in future sections, which is subject to the restraint (4.2),
and is given as

± t + r ¢ (H ·u) +
¯

"
·ht = 0 (4.5)

and

·ut + "·u ¢ r ·u + r ± + · 2 @

@t

½
1
2 h2

0r(r ¢ ·u) ¡ 1
6 h0r

·
r ¢ (h0 ·u) +

¯

"
·ht

¸¾

= O( · 4; "· 2; ¯ · 2); (4.6)

where the depth-averaged velocity is de­ ned as

·u(x; y; t) =
1

h + "±

Z "±

h

u(x; y; z; t) dz: (4.7)

This set of model equations (4.5) and (4.6) will be referred to as WNL-DA, for weakly
nonlinear depth-averaged equations.

(b) Nonlinear shallow-water waves

In the case that the water depth is very shallow or the wavelength is very long,
the governing equations (3.2) and (3.3) can be truncated at O( · 2). These resulting
equations are the well-known nonlinear shallow-water equations in which the sea®oor
movement is the forcing term for wave generation. This set of equations will be
referred to as NL-SW, for nonlinear shallow-water equations.

5. Numerical model

In this paper, a ­ nite-di¬erence algorithm is presented for the general model equa-
tions, FNL-EXT. This model has the robustness of enabling slide-generated surface
waves, although initially linear or weakly nonlinear in nature, to propagate into shal-
low water, where fully nonlinear e¬ects may become important. The algorithm is
developed for the general two-horizontal-dimension problem; however, in this paper,
only one-horizontal-dimension examples are examined. The structure of the present
numerical model is similar to those of Wei & Kirby (1995) and Wei et al . (1995).
Di¬erences between the model presented here and that of Wei et al . exist in the
added terms due to a time-dependent water depth and the numerical treatment of
some nonlinear-dispersive terms, which is discussed in more detail in Appendix B.
A high-order predictor-corrector scheme is used, employing a third order in time
explicit Adams{Bashforth predictor step, and a fourth order in time Adams{Moulton
implicit corrector step (Press et al . 1989). The implicit corrector step must be iter-
ated until a convergence criterion is satis­ ed. All spatial derivatives are di¬erenced to
fourth-order accuracy, yielding a model that is numerically accurate to (¢x)4, (¢y)4

in space and (¢t)4 in time. The governing equations (3.2) and (3.3) are dimen-
sionalized for the numerical model, and all variables described in this and following
sections will be in the dimensional form. Note that the dimensional equations are
equivalent to the non-dimensional ones with " = · = 1 and the addition of gravity,
g, to the coe¯ cient of the leading-order free-surface derivative in the momentum
equation (i.e. the third term on the left-hand side of (3.3)). The predictor-corrector
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equations are given in Appendix B, along with some additional description of the
numerical scheme. Run-up and rundown of the waves generated by the submarine
disturbance will also be examined. The moving-boundary scheme employed here is
the technique developed by Lynett et al . (2002). Founded around the restrictions
of the high-order numerical wave-propagation model, the moving-boundary scheme
uses linear extrapolation of free surface and velocity through the shoreline, into the
dry region. This approach allows for the ­ ve-point ­ nite-di¬erence formulae to be
applied at all points, even those neighbouring dry points, and thus eliminates the
need of conditional statements.

In addition to the depth-integrated-model numerical results, output from a two-
dimensional (vertical-plane) BIEM model will be presented for certain cases. This
BIEM model will be primarily used to determine the deep-water-accuracy limit of the
depth-integrated model. The BIEM model solves for inviscid irrotational ®ows and
converts a boundary-value problem into an integral equation along the boundary of
a physical domain. Therefore, just as with the depth-integration approach, it reduces
the dimension of the problem by one. The BIEM model used here solves the Laplace
equation in the vertical plane (x; z), and, of course, is valid in all water depths for all
wavelengths. Details of this type of BIEM model, when used to model water-wave
propagation, can be found in Grilli et al . (1989), Liu et al . (1992) and Grilli (1993),
for example. The BIEM model used in this work has reproduced the numerical results
presented for landslide-generated waves in Grilli & Watts (1999) perfectly.

6. Comparisons with experiment and other models

As a ­ rst check of the present model, a comparison between Hammack’s (1973)
experimental data for an impulsive bottom movement in a constant water depth is
made. The bottom movement consists of a length, l0 = 24:4 water depths, which
is pushed vertically upward. The change in depth for this experiment, ¯ , is 0.1, so
nonlinear e¬ects should play a small role near the source region. Figure 2 shows a
comparison between the numerical results using FNL-EXT, experimental data and
the linear theory presented by Hammack. Both the fully nonlinear model and the
linear theory agree well with experiment at the edge of the source region (­ gure 2a).
From ­ gure 2b, a time-series taken at 20 water depths from the edge of the source
region, the agreement between all data is again quite good, but the deviation between
the linear theory and experiment is slowly growing. The purpose of this comparison
is to show that the present numerical model accurately predicts the free-surface
response to a simple sea®oor movement. It would seem that if one was interested
in just the wave ­ eld very near the source, linear theory is adequate. However, as
the magnitude of the bed upthrust, ¯ , becomes large, linear theory is not capable of
accurately predicting the free-surface response, even very near the source region. One
such linear versus nonlinear comparison is shown in ­ gure 2 for ¯ = 0:6. The motion
of the bottom movement is the same as in Hammack’s case above. Immediately on the
outskirts of the bottom movement, there are substantial di¬erences between linear
and nonlinear theory, as shown in ­ gure 2c. Additionally, as the wave propagates
away from the source, errors in linear theory are more evident.

A handful of experimental trials and analytic solutions exist for non-impulsive
sea®oor movements. However, for the previous work that made use of smooth obsta-
cles, such as a semicircle (e.g. Forbes & Schwartz 1982) or a semi-ellipse (e.g. Lee et
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Figure 2. (a), (b) Comparison between Hammack’ s (1973) experimental data (dots) for an impul-
sive sea° oor upthrust of ¯ = 0:1, FNL-EXT numerical simulation (solid line), and linear theory
(dashed line). (a) Time-series at x=h = 0; (b) time-series at x=h = 20, where x is the distance
from the edge of the impulsive movement. (c), (d) FNL-EXT (solid line) and L-EXT (dashed
line) numerical results for Hammack’ s set-up, except with ¯ = 0:6.

al . 1989), the length of the obstacle is always less than 1.25 water depths, or · > 0:8.
Unfortunately, these objects will create waves too short to be modelled accurately
by a depth-integrated model.

Watts (1997) performed a set of experiments where he let a triangular block free fall
down a planar slope. In all the experiments, the front (deep-water) face of the block
was steep, and in some cases vertical. Physically, as the block travels down a slope,
water is pushed out horizontally from the vertical front. Numerically, however, using
the depth-integrated model, the dominant direction of water motion near the vertical
face is vertical. This can be explained as follows. Examining the depth-integrated-
model equations, starting from the leading-order shallow-water-wave equations, the
only forcing term due to the changing water depth appears in the continuity equation.
There is no forcing term in the horizontal momentum equation. Therefore, in the non-
dispersive system, any sea®oor bottom cannot directly create a horizontal velocity.
This concept can be further illuminated by the equation describing the vertical pro­ le
of horizontal velocity,

u(x; y; z; t) = u¬ (x; y; t) + O( · 2): (6.1)
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Figure 3. Graphical de¯nition of the characteristic side length of a slide mass. The slide mass at
time t0 is shown by the solid line, while the pro¯le at some time t > t0 is shown by the dashed
line. The negative of the change in water depth (or the approximate free-surface response in the
non-dispersive equation model) during the increment t ¡ t0 is shown by the thick line plotted
on z = 0:1.

Again, the changing sea®oor bottom cannot directly create a horizontal velocity
component for the non-dispersive system. All of the sea®oor movement, whether it is
a vertical or translational motion, is interpreted as strictly a vertical motion, which
can lead to a very di¬erent generated wave pattern.

When adding the weakly dispersive terms, the vertical pro­ le of the horizontal
velocity becomes

u(x; y; z; t) = u¬ (x; y; t) ¡ · 2

½
1
2 z2 ¡ z2

¬ r(r¢u¬ )+(z ¡ z ¬ )r
·
r¢(hu ¬ )+

ht

"

¸¾
+O( · 4):

(6.2)
Now, with the higher-order dispersive formulation, there is the forcing term, rht,
which accounts for the e¬ects of a horizontally moving body. Keep in mind, how-
ever, that this forcing term is a second-order correction, and therefore should rep-
resent only a small correction to the horizontal velocity pro­ le. Thus, with rapid
translational motion and/or steep side slopes of a submarine slide, the ®ow motion
is strongly horizontal locally, and the depth-integrated models are not adequate.
In slightly di¬erent terms, let the slide mass have a characteristic side length, L s .
A side length is de­ ned as the horizontal distance between two points at which
@h=@t = 0. This de­ nition of a side length is described graphically in ­ gure 3.
Figure 3a shows a slide mass that is symmetric around its midpoint in the hori-
zontal direction, where the back (shallow-water) and front (deep-water) side lengths
are equal. Figure 3b shows a slide mass whose front side is much shorter that the
back. Note that for the slide shown in ­ gure 3b, the side lengths, measured in the

Proc. R. Soc. Lond. A (2002)



Submarine-landslide-generated waves and run-up 2895

z

x x1 xc xr

h0 (x)

hc (t)

b

D h h (x, t)

d (t)

Figure 4. Set-up for submarine landslide comparisons.

direction parallel to the slope, are equal, whereas for the slide in ­ gure 3a, the
slide lengths are equal when measured in the horizontal direction. An irregular slide
mass will have at least two di¬erent side lengths. In these cases, the characteris-
tic side length, Ls , is the shortest of all sides. When L s is small compared to a
characteristic water depth, h0, that side is considered steep, or in deep water, and
the shallow-water-based depth-integrated model will not be accurate. For the ver-
tical face of Watts’s experiments, L s = 0, and therefore Ls =h0 = 0, and the sit-
uation resembles that of an in­ nitely deep ocean. The next section will attempt
to determine a limiting value of L s =h0 where the depth-integrated model begins to
fail.

7. Limitations of the depth-integrated model

Before using the model for practical applications, the limits of accuracy of the depth-
integrated model must be determined. As illustrated above, just as there is a short-
wave accuracy limit (wave should be at least two water depths long when applying
the `extended’ model), it is expected that there is also a slide length-scale limitation.
By comparing the outputs of this model to those of the BIEM model, a limiting value
of Ls =h0 can be inferred. The high degree of BIEM model accuracy in simulating
wave propagation is well documented (e.g. Grilli 1993; Grilli et al . 1995).

The comparison cases will use a slide mass travelling down a constant slope. The
slide mass moves as a solid body, with velocity described following Watts (1997).
This motion is characterized by a decreasing acceleration until a terminal velocity is
reached. All of the solid-body motion coe¯ cients used in this paper are identical to
those employed by Grilli & Watts (1999). Note that all of the submarine landslide
simulations presented in this paper are non-breaking.
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Figure 5. Free-surface snapshots for BIEM (solid line) and depth-integrated (dashed line) results
at t(g=d0)1=2 values of (a) 10.6, (b) 21, (c) 31.6 and (d) 41. (e) The location of the slide mass in
each of the four snapshots above.

The set-up of the slide mass on the slope is shown in ­ gure 4. The time-history of
the sea®oor is described by

h(x; t) = h0(x) ¡ 1
2
¢h

·
1 + tanh

µ
x ¡ xl(t)

S

¶¸·
1 ¡ tanh

µ
x ¡ xr(t)

S

¶¸
; (7.1)

where ¢h is the maximum vertical height of the slide, xl is the location of the tanh
in®ection point of the left side of the slide, xr is the location of the in®ection point
on the right side, and S is a shape factor, controlling the steepness of the slide sides.
The left and right boundaries and steepness factor are given by

xl(t) = xc(t) ¡ 1
2
b cos( ³ ); xr(t) = xc(t) + 1

2
b cos( ³ ); S =

0:5

cos( ³ )
;

where xc is the horizontal location of the centre point of the slide, and is determined
using the equations governing the solid body motion of the slide. The angle of the
slope is given by ³ . The thickness of the `slideless’ water column, or the baseline water
depth, at the centre point of the slide is de­ ned by hc(t) = h0(xc(t)) = ¢h + d(t).
With a speci­ ed depth above the initial centre point of the slide mass, d0 = d(t = 0),
the initial horizontal location of the slide centre, xc(t = 0), can be found. The length
along the slope between xl and xr is de­ ned as b, and all lengths are scaled by b.
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Figure 6. Time-series above the initial centre point of the slide ((a), (c), (e)) and vertical move-
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¢ h = 0:1. BIEM results are shown by the solid line, depth-integrated results by the dashed line.
(a), (b) d0 =b = 0:4; (c), (d) d0=b = 0:6; and (e), (f ) d0 =b = 1:0.

For the ­ rst comparison, a slide with the parameter set ³ = 6¯, d0=b = 0:2 and
¢h=b = 0:05 is modelled with FNL-EXT and BIEM. With these parameters, the
characteristic horizontal side length of the slide mass, L s =b, is 1.7. Ls is de­ ned as in
­ gure 3 or, speci­ cally, the horizontal distance between two points at which @h=@t
is less than 1% of the maximum @h=@t value. Note that a 6¯ slope is roughly 1

10 .
Figure 5 shows four snapshots of the free-surface elevation from both models. The
lowest panel in the ­ gure shows the initial location of the slide mass, along with
the locations corresponding to the four free-surface snapshots. Initially, as shown
in ­ gure 5a; b, where Ls =hc = 6:1 and 4.5 respectively, the two models agree, and
thus are still in the range of acceptable accuracy of the depth-integrated model. In
­ gure 5c, as the slide moves into deeper water, where L s =hc = 3:1, the two models
begin to diverge over the source region, and by ­ gure 5d, the free-surface responses
of the two models are quite di¬erent. These results indicate that in the vicinity of
x=b = 5, the depth-integrated model becomes inaccurate. At this location, hc=b = 0:5
and Ls =hc = 3:4.

Numerous additional comparison tests were performed, and all indicated that the
depth-integrated model becomes inaccurate when L s =hc < 3{3.5. One more of the
comparisons is shown here. Examining a 20¯ slope and a slide mass with a maxi-
mum height ¢h=b = 0:1, the initial depth of submergence, d0=b, will be successively
increased from 0.4 to 0.6 to 1.0. The corresponding initial L s =hc values are 3.4, 2.4
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and 1.5, respectively. Time-series above the initial centre point of the slide masses
and vertical shoreline movements are shown in ­ gure 6. The expectation is that
the ­ rst case (L s =hc = 3:4 initially) should show good agreement, the middle case
(L s =hc = 2:4 initially) marginal agreement, and the last case (L s =hc = 1:5 initially)
bad agreement. The time-series above the centre, ­ gure 6a; c; e, clearly agree with the
stated expectation. Various di¬erent z ¬ levels were tested in an attempt to better the
agreement with the BIEM-model results for the deeper water cases, but z ¬ = ¡ 0:531h
provided the most accurate output. Rundown, as shown in ­ gure 6b; d; f , shows good
agreement for all the trials. The explanation is that the wave that creates the run-
down is generated from the back face of the slide mass. This wave sees a characteristic
water depth that is less than hc, and thus this back face wave remains in the region
of accuracy of the depth-integrated model, whereas the wave motion nearer to the
front face of the slide is inaccurate. This feature is also clearly shown in ­ gure 5.
Thus, if one was solely interested in the leading wave approaching the shoreline, the
characteristic water depth should be interpreted as the average depth along the back
face of the slide, instead of hc. The inaccurate elevation waves created by the front
face of the moving mass could be absorbed numerically, such as with a sponge layer,
so that they do not e¬ect the simulation.

A guideline that the depth-integrated `extended’ model will yield accurate results
for Ls =hc > 3:5 is accepted. This restriction would seem to be more stringent than the
`extended’ model frequency-dispersion limitation, which requires that the free-surface
wave be at least two water depths long. In fact, the slide length-scale limitation is
more in line with the dispersion limitations of the depth-averaged (conventional)
model. The limitations of the various model formulations, i.e. `extended’ and depth
averaged, are discussed in the next section.

8. Importance of nonlinearity and frequency dispersion

Another useful guideline would be to know when nonlinear e¬ects begin to play
an important role. This can be determined by running numerous numerical trials,
employing the FNL-EXT, WNL-EXT and L-EXT equation models. These three
equation sets share identical linear-dispersion properties, but have varying levels of
nonlinearity. The linear-dispersion limit of these `extended’ equations, for the rigid
bottom case, is near kh = 3, where k is the wavenumber. Nonlinearity, however,
is only faithfully captured to near kh = 1:0 for the FNL-EXT model, and to an
even lesser value for WNL-EXT (Gobbi et al . 2000). The source-generation accuracy
limitation of the model is such that the side length of the landslide over the depth
must be greater than 3.5. If the slide is symmetric in the horizontal direction, which is
the only type of slide examined in this section, then the wavelength of the generated
wave will be 2£3:5£h, or roughly kh = 1. Thus, up to the accuracy limit found in the
previous section, nonlinearity is expected to be well captured. The FNL-EXT model
will be considered correct, and any di¬erence in output compared to the other models
with lesser nonlinearity would indicate that full nonlinear e¬ects are important.

The importance of nonlinearity will be tested through examination of various
¢h=d0 combinations, using the slide mass described in the previous section. The value
of ¢h=d0 can be thought of as an impulsive nonlinearity, as this value represents the
magnitude of the free-surface response if the slide motion was entirely vertical and
instantaneous. The procedure will be to hold the value hc0

= hc(t = 0) = ¢h + d0
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Figure 7. Maximum depression above the initial centre point of the slide mass and maximum
rundown for four di® erent trial sets. FNL-EXT results indicated by the solid line, WNL-EXT
by the dashed line and L-EXT by the dotted line.

constant for a given slope angle, while altering ¢h and d0. Two output values will
be compared between all the simulations: maximum depression above the initial
centre point of the slide and maximum rundown. For all simulations presented in
this section, ¢x=b = 0:003 and ¢t

p
ghc0

=b = 0:0003.
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Table 1. Characteristics of the simulations performed for the nonlinearity test

slope
set no. (deg) hc0 =b L s =hc0

1 30 0.55 3.5

2 15 0.55 3.5

3 5 0.55 3.5

4 5 0.15 13

Figure 7 shows the output from four sets of comparisons, whose characteris-
tics are given in table 1. Figure 7a; b show the depression above the centre point
and the rundown for set 1, ­ gure 7c; d for set 2, ­ gure 7e; f for set 3 and ­ g-
ure 7g; h for set 4. Examining the maximum depression plots for sets 1{3, it is clear
that the trends between the three sets are very similar, with FNL-EXT predicting
the largest depression and L-EXT predicting the smallest. The di¬erence between
FNL-EXT and WNL-EXT is solely due to nonlinear-dispersive terms, which are
of O("· 2), while the di¬erence between WNL-EXT and L-EXT is caused by the
nonlinear-divergence term in the continuity equation and the convection term in
the momentum equation, which are of O("). The relative di¬erences in the maxi-
mum depression predicted between FNL-EXT and WNL-EXT are roughly the same
as the di¬erences between WNL-EXT and L-EXT for sets 1, 2 and 3. Therefore,
in the source region, for L s =hc0

values near the accuracy limit of the `extended’
model (near 3.5), the nonlinear-dispersive terms are as necessary to include in
the model as the leading order nonlinear terms. As the L s =hc value is increased,
the slide produces an increasingly longer (shallow-water) wave. Frequency disper-
sion plays a lesser role, and thus the nonlinear-dispersive terms become expect-
edly less important. This can be seen in the maximum depression plot for set 4.
For this set, Ls =hc0

= 13, and the FNL-EXT and WNL-EXT results are nearly
indistinguishable.

Inspecting the maximum rundown plots for sets 1, 2 and 3, it seems that the
trends between the three di¬erent models have changed. Now, WNL-EXT predicts
the largest rundown, while L-EXT predicts the smallest. It is hypothesized that the
documented over-shoaling of WNL-EXT (Wei et al . 1995) cancels out the lesser wave
height generated in the source region compared to FNL-EXT, leading to rundown
heights that agree well between the two models. As the slope is decreased, the error
in the L-EXT rundown prediction increases. This is attributed to a longer distance
of shoaling before the wave reaches the shoreline. As the slope is decreased, while
hc0

is kept constant, the horizontal distance from the shoreline to the initial centre
point of the slide increases. The slide length is roughly the same for the three sets,
therefore the generated wavelength is roughly the same. Thus, with a lesser slope, the
generated wave shoals for a greater number of wave periods. During this relatively
larger distance of shoaling, nonlinear e¬ects, and in particular the leading-order
nonlinear e¬ects, accumulate and yield large errors in the linear (L-EXT) simulations.
This trend is also evident in the rundown plot for set 4. Also note that in set 4,
where the nonlinear-dispersive terms are very small, the FNL-EXT and WNL-EXT
rundowns are identical.

Proc. R. Soc. Lond. A (2002)



Submarine-landslide-generated waves and run-up 2901

- 0.2

- 0.1

0

0.92

0.94

0.96

0.98

1.00

1.02

- 0.2

- 0.1

0

5 10 15 20
1.0

1.1

1.2

1.3

m
ax

. r
un

-d
ow

n/
m

ax
. r

un
do

w
n 

W
N

L
-E

X
T

- 8

- 6

- 4

- 2

0

z/
d 0 

´  
10

-3

m
ax

im
um

 r
un

do
w

n 
/ d

0

slope = 15º
D  h /b = 0.05
Ls /b = 1.85

Ls /hc0

m
ax

. d
ep

./
m

ax
. d

ep
. W

N
L

-E
X

T
m

ax
im

um
 d

ep
re

ss
io

n 
/ d

0

slope = 15º
D  h /b = 0.05
Ls /b = 1.85

0 10 20 30 40 50

 - 0.02

 - 0.01

0

sh
or

el
in

e 
m

ov
em

en
t /

 d
0

Ls /hc0
 = 3.5

time *  (g /d0)1/2

Ls /hc0
 = 3.5

(a)

(b)

(c)

(d)
( f )

(e)

Figure 8. Maximum depression above the initial centre point of the slide mass (a) and max-
imum rundown (d) for a set of numerical simulations on a 15¯ slope. (b), (e) The maximum
depression and maximum rundown scaled by the corresponding values from the WNL-EXT
model. Time-series comparisons for L s =hc0 = 3:5 showing the free-surface elevation above the
centre point (c) and vertical shoreline movement (f ) are given on the right. WNL-EXT results
indicated by the solid line, WNL-DA by the dashed line and NL-SW by the dotted line.

A deep-water limit has been determined for the `extended’ model (L s =hc > 3:5),
but it would also be interesting to know the limits of applicability of the depth-
averaged (WNL-DA) and shallow-water (NL-SW) models. The only di¬erences
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between these three models (the weakly nonlinear `extended’, weakly nonlinear depth
averaged and nonlinear shallow water) are found in the frequency-dispersion terms|
the nonlinear terms are the same. The testing method to determine the deep-water
limits of the various model types will be to ­ x both a slope of 15¯ and a slide mass,
with ¢h=b = 0:05 and L s =b = 1:85, while incrementally increasing the initial water
depth above the centre point of the slide, d. Figure 8 shows a summary of the com-
parisons of the three models. Figure 8a; d show the maximum free-surface depression
measured above the initial centre point of the slide and the maximum rundown for
various L s =hc0

combinations. WNL-EXT solutions are indicated by solid lines, WNL-
DA by dashed lines and NL-SW by the dotted lines. Also shown in ­ gure 8b; e are the
maximum depression and rundown results from WNL-DA and NL-SW relative to the
results from WNL-EXT, thereby more clearly depicting the di¬erences between the
models. These ­ gures show WNL-EXT and WNL-DA agreeing nearly exactly, while
the errors in NL-SW decrease with increasing L s =hc0

. The NL-SW results do not
converge with the WNL-EXT results until Ls =hc0

& 15. Figure 8c; f are time-series
of the free-surface elevation above the initial centre point of the slide and the verti-
cal movement of the shoreline for the case of L s =hc0

= 3:5, respectively. Di¬erences
between NL-SW and WNL-EXT are clear, with NL-SW under-predicting the free
surface above the slide, but over-predicting the rundown due to over shoaling in the
non-dispersive model. The only signi­ cant di¬erence between the WNL-EXT and
WNL-DA results come after the maximum depression in ­ gure 8c, where WNL-DA
predicts an oscillatory train following the depression. These results indicate that to
the deep-water limit that WNL-EXT was shown to be accurate, WNL-DA is accurate
as well. As mentioned previously, altering the level on which z ¬ is evaluated in the
`extended’ model does not increase the deep-water accuracy limit for slide-generated
waves.

In summary, the nonlinear-dispersive terms are important for slides near the
deep-water limit (L s =hc = 3:5) whose heights, or ¢h=d0 values, are large (greater
than 0.4). For shallow-water slides (L s =hc > 10), the nonlinear-dispersive terms are
not important near the source, even for the largest slides. The `extended’ formula-
tion of the depth-integrated equations does not appear to o¬er any bene­ ts over the
depth-averaged formulation in regards to modelling the generation of waves in deeper
water. The `extended’ model would be useful if one was interested in modelling the
propagation of shallow-water slide-generated waves into deeper water, which is not
the focus of this paper. The shallow-water-wave equations are only valid for slides in
very shallow water, where L s =hc0

& 15.

9. Conclusions

A model for the creation of fully nonlinear long waves by sea®oor movement, and their
propagation away from the source region, is presented. The general fully nonlinear
model can be truncated, so as to only include weakly nonlinear e¬ects, or model a
non-dispersive wave system. Rarely will fully nonlinear e¬ects be important above
the landslide region, but the model has the advantage of allowing the slide-generated
waves to become fully nonlinear in nature, without requiring a transition among
governing equations.
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A high-order ­ nite-di¬erence model is developed to numerically simulate wave
generation by sea®oor movement. The numerical generation of waves by both impul-
sive and creeping movements agrees with experimental data and other numerical
models. A deep-water accuracy limit of the model, Ls =hc > 3:5, is adopted. Within
this limitation, the `extended’ formulation of the depth-integrated equations shows
no bene­ t over the `conventional’ depth-averaged approach near the source region.
Leading-order nonlinear e¬ects were shown to be important for prediction of shoreline
movement, and the fully nonlinear terms are important for only the thickest slides
with relatively short length-scales. Although only one-horizontal-dimension problems
are examined in this paper, slides in two horizontal dimensions have been analysed
by the authors, but, due to paper length limitations, will be presented in a future
publication. As a ­ nal remark, it is noted that prediction of landslide tsunamis in
real cases is subject to the large uncertainty inherent in knowing the time-evolution
of a landslide. Extensive ­ eld research of high-risk sites is paramount to reducing
this uncertainty.

The research reported here is partly supported by grants from the National Science Foundation
(CMS-9528013, CTS-9808542 and CMS 9908392) and a subcontract from the University of
Puerto Rico. The authors thank Ms Yin-yu Chen for providing the numerical results based on
her BIEM model.

Appendix A. Derivation of approximate
two-dimensional governing equations

In deriving the two-dimensional depth-integrated governing equations, the frequency
dispersion is assumed to be weak, i.e.

O( · 2) ½ 1: (A 1)

We can expand the dimensionless physical variables as power series of · 2,

f =

1X

n = 0

· 2nfn (f = ± ; p; u); (A 2)

w =

1X

n = 1

· 2nwn: (A 3)

Furthermore, we will assume the ®ow is irrotational. Zero horizontal vorticity yields
the following conditions:

@

@z
u0 = 0; (A 4)

@

@z
u1 = rw1: (A 5)

Consequently, from (A 4), the leading-order horizontal velocity components are inde-
pendent of the vertical coordinate, i.e.

u0 = u0(x; y; t): (A 6)
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Substituting (A 2) and (A 3) into the continuity equation (2.3) and the boundary
condition (2.7), we collect the leading-order terms as

r ¢ u0 + w1z = 0; ¡ h < z < "± ; (A 7)

w1 + u0 ¢ rh +
ht

"
= 0 on z = ¡ h: (A 8)

Integrating (A 7) with respect to z and using (A 8) to determine the integration
constant, we obtain the vertical pro­ le of the vertical velocity components,

w1 = ¡ zr ¢ u0 ¡ r ¢ (hu0) ¡ ht

"
: (A 9)

Similarly, integrating (A 5) with respect to z, with information from (A 8), we can
­ nd the corresponding vertical pro­ les of the horizontal velocity components,

u1 = ¡ 1
2z2r(r ¢ u0) ¡ zr

·
r ¢ (hu0) +

ht

"

¸
+ C1(x; y; t); (A 10)

in which C1 is a unknown function to be determined. Up to O(· 2), the horizontal
velocity components can be expressed as

u = u0(x; y; t)

+ · 2

½
¡ 1

2z2r(r ¢ u0) ¡ zr
·
r ¢ (hu0) +

ht

"

¸
+ C1(x; y; t)

¾
+ O( · 4);

¡ h < z < "± :
(A 11)

Now, we can de­ ne the horizontal velocity vector, u ¬ (x; y; z ¬ (x; y; t); t), evaluated
at z = z ¬ (x; y; t), as

u ¬ = u0 + · 2

½
¡ 1

2z2
¬ r(r¢u0) ¡ z ¬ r

·
r¢ (hu0)+

ht

"

¸
+C1(x; y; t)

¾
+O( · 4): (A 12)

Subtracting (A 12) from (A 11), we can express u in terms of u¬ as

u = u ¬ ¡ · 2

½
1
2z2 ¡ z2

¬ r(r ¢ u ¬ ) + (z ¡ z ¬ )r
·
r ¢ (hu¬ ) +

ht

"

¸¾
+ O( · 4): (A 13)

Note that u ¬ = u0 + O( · 2) has been used in (A 13).
The exact continuity equation (2.8) can be rewritten approximately in terms of ±

and u ¬ . Substituting (A 13) into (2.8), we obtain

1

"
Ht + r ¢ (Hu ¬ ) ¡ · 2r ¢

½
H

·
( 1

6("2 ± 2 ¡ "± h + h2) ¡ 1
2z2

¬ )r(r ¢ u ¬ )

+ ( 1
2 ("± ¡ h) ¡ z ¬ )r

µ
r ¢ (hu ¬ ) +

ht

"

¶¸¾
= O( · 4);

(A 14)

in which H = h + "± .
Equation (A 14) is one of three governing equations for ± and u ¬ . The other two

equations come from the horizontal momentum equation (2.4). However, we must
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­ nd the pressure ­ eld ­ rst. This can be accomplished by approximating the vertical
momentum equation (2.5) as

"pz = ¡ 1 ¡ · 2("w1t + "2u0 ¢ rw1 + "2w1w1z) + O( · 4); ¡ h < z < "± : (A 15)

We can integrate the above equation with respect to z to ­ nd the pressure ­ eld as

p =

µ
± ¡ z

"

¶

+ · 2

½
1
2 (z2 ¡ "2 ± 2)r ¢ u0t + (z ¡ "± )

·
r ¢ (hu)0t +

htt

"

¸

+ 1
2"(z2 ¡ "2 ± 2)u0 ¢ r(r ¢ u0) + "(z ¡ "± )u0 ¢ r

·
r ¢ (hu0) +

ht

"

¸

+ 1
2"("2 ± 2 ¡ z2)(r ¢ u0)2 + "("± ¡ z)

·
r ¢ (hu0) +

ht

"

¸
r ¢ u0

¾

+ O( · 4)
(A 16)

for ¡ h < z < "± . We remark here that (A 11) has been used in deriving (A 16). To
obtain the governing equations for u¬ , we ­ rst substitute (A 13) and (A 16) into (2.4)
and obtain the following equation, up to O( · 2),

u ¬ t + "u ¬ ¢ ru ¬ + r ±

+ · 2

½
1
2 z2

¬ r(r ¢ u¬ t) + z ¬ r
·
r ¢ (hu¬ )t +

htt

"

¸¾

+ · 2z ¬ t

½
z ¬ r(r ¢ u¬ ) + r

·
r ¢ (hu ¬ ) +

ht

"

¸¾

+ "· 2

½·
r ¢ (hu¬ ) +

ht

"

¸
r

·
r ¢ (hu¬ ) +

ht

"

¸

¡ r
·
±

µ
r ¢ (hu¬ )t +

htt

"

¶¸
+ (u ¬ ¢ rz ¬ )r

·
r ¢ (hu ¬ ) +

ht

"

¸

+ z ¬ r
·
u¬ ¢ r

µ
r ¢ (hu¬ ) +

ht

"

¶¸
+ z ¬ (u ¬ ¢ rz ¬ )r(r ¢ u ¬ )

+ 1
2z2

¬ r[u¬ ¢ r(r ¢ u¬ )]

¾

+ "2 · 2r
½

¡ 1
2 ± 2r ¢ u ¬ t ¡ ± u ¬ ¢ r

·
r ¢ (hu ¬ ) +

ht

"

¸

+ ±

·
r ¢ (hu¬ ) +

ht

"

¸
r ¢ u¬

¾

+ "3 · 2r
½

1
2 ± 2[(r ¢ u ¬ )2 ¡ u ¬ ¢ r(r ¢ u ¬ )]

¾
= O( · 4): (A 17)

Equations (A 14) and (A 17) are the coupled governing equations, written in terms
of u ¬ and ± , for fully nonlinear weakly dispersive waves generated by a submarine
landslide.
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Appendix B. Numerical scheme

To simplify the predictor-corrector equations, the velocity time derivatives in the
momentum equations are grouped into the dimensional form,

U = u + 1
2(z2

¬ ¡ ± 2)uxx + (z ¬ ¡ ± )(hu)xx ¡ ± x[ ± ux + (hu)x]; (B 1)

V = v + 1
2(z2

¬ ¡ ± 2)vyy + (z ¬ ¡ ± )(hv)yy ¡ ± y [ ± vy + (hv)y ]; (B 2)

where subscripts denote partial derivatives. Note that this grouping is di¬erent from
that given in Wei et al . (1995). The grouping given above in (B 1) and (B 2) incor-
porates nonlinear terms, which is not done in Wei et al . These nonlinear time
derivatives arise from the nonlinear-dispersion terms r[ ± (r ¢ (hu ¬ )t + htt=")] and
r( 1

2 ± 2r ¢ u ¬ t), which can be reformulated using the relation

r
·
±

µ
r ¢ (hu¬ )t +

htt

"

¶¸

= r
·
±

µ
r ¢ (hu ¬ ) +

ht

"

¶¸

t

¡ r
·
± t

µ
r ¢ (hu ¬ ) +

ht

"

¶¸
r( 1

2 ± 2r ¢ u ¬ t)

= r( 1
2 ± 2r ¢ u¬ )t ¡ r( ± ± tr ¢ u ¬ ):

The authors have found that this form is more stable and requires less iterations to
converge for highly nonlinear problems, as compared to the Wei et al . formulation.
The predictor equations are

² n+ 1
i;j = ² n

i;j + 1
12¢t(23En

i;j ¡ 16En¡1
i;j + 5En¡2

i;j ); (B 3)

U n+ 1
i;j = Un

i;j + 1
12¢t(23F n

i;j ¡ 16F n¡1
i;j + 5F n¡2

i;j ) + 2(F1)n
i;j ¡ 3(F1)n¡1

i;j + (F1)n¡2
i;j ;

(B 4)

V n+ 1
i;j = V n

i;j + 1
12¢t(23Gn

i;j ¡ 16Gn¡1
i;j + 5Gn¡2

i;j ) + 2(G1)n
i;j ¡ 3(G1)n¡1

i;j + (G1)n¡2
i;j ;

(B 5)

where

E = ¡ ht ¡ [( ± + h)u]x ¡ [( ± + h)v]y

+ f(h + ± )[( 1
6( ± 2 ¡ ± h + h2) ¡ 1

2z2
¬ )Sx + ( 1

2( ± ¡ h) ¡ z ¬ )Tx]gx

+ f(h + ± )[( 1
6
( ± 2 ¡ ± h + h2) ¡ 1

2
z2

¬ )Sy + ( 1
2
( ± ¡ h) ¡ z ¬ )Ty]gy ; (B 6)

F = ¡ 1
2 [(u2)x + (v2)x] ¡ g± x ¡ z ¬ hxtt ¡ z ¬ thxt + ( ± htt)x ¡ [E( ± S + T )]x

¡ [1
2(z2

¬ ¡ ± 2)(uSx + vSy)]x ¡ [(z ¬ ¡ ± )(uTx + vTy)]x ¡ 1
2 [(T + ± S)2]x;

(B 7)

F1 = 1
2
( ± 2 ¡ z2

¬ )vxy ¡ (z ¬ ¡ ± )(hv)xy + ± x[ ± vy + (hv)y ]; (B 8)

G = ¡ 1
2
[(u2)y + (v2)y ] ¡ g± y ¡ z ¬ hytt ¡ z ¬ thyt + ( ± htt)y ¡ [E( ± S + T )]y

¡ [1
2
(z2

¬ ¡ ± 2)(uSx + vSy)]y ¡ [(z ¬ ¡ ± )(uTx + vTy)]y ¡ 1
2
[(T + ± S)2]y ;

(B 9)

G1 = 1
2 ( ± 2 ¡ z2

¬ )uxy ¡ (z ¬ ¡ ± )(hu)xy + ± y [ ± ux + (hu)x] (B 10)
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and

S = ux + vy ; T = (hu)x + (hv)y + ht: (B 11)

All terms are evaluated at the local grid point (i; j), and n represents the current
time-step, when values of ± , u and v are known. The above expressions (B 6){(B 11)
are for the fully nonlinear problem; if a weakly nonlinear or non-dispersive system
is to be examined, the equations should be truncated accordingly. The fourth-order
implicit corrector expressions for the free-surface elevation and horizontal velocities
are

² n + 1
i;j = ² n

i;j + 1
24¢t(9En+ 1

i;j + 19En
i;j ¡ 5En¡1

i;j + En¡2
i;j ); (B 12)

Un + 1
i;j = Un

i;j + 1
24 ¢t(9F n + 1

i;j + 19F n
i;j ¡ 5F n¡1

i;j + F n¡2
i;j ) + (F1)n+ 1

i;j ¡ (F1)n
i;j; (B 13)

V n + 1
i;j = V n

i;j + 1
24¢t(9Gn + 1

i;j + 19Gn
i;j ¡ 5Gn¡1

i;j + Gn¡2
i;j ) + (G1)n + 1

i;j ¡ (G1)n
i;j:

(B 14)

The system is solved by ­ rst evaluating the predictor equations, then u and v are
solved via (B 1) and (B 2), respectively. Both (B 1) and (B 2) yield a diagonal matrix
after ­ nite di¬erencing. The matrices are diagonal, with a bandwidth of ­ ve (due to
­ ve-point ­ nite di¬erencing), and an e¯ cient LU decomposition can be used. At this
point in the numerical system, we have predictors for ± , u and v. Next, the corrector
expressions are evaluated, and again u and v are determined from (B 1) and (B 2).
The relative errors in each of the physical variables is found, in order to determine
if the implicit correctors need to be reiterated. This relative error is given as

wn + 1 ¡ wn+ 1
¤

wn + 1
; (B 15)

where w represents ± , u and v, and w ¤ is the previous iterations value. The correctors
are recalculated until all errors are less than 10¡4. Note that, inevitably, there will
be locations in the numerical domain where values of the physical variables are
close to zero, and applying the above error calculation to these points may lead to
unnecessary iterations in the corrector loop. Thus it is required that

¯̄
¯̄ ±

a

¯̄
¯̄;

¯̄
¯̄ u; v

°
p

gh

¯̄
¯̄ > 10¡4

for the corresponding error calculation to proceed, where a is determined from equa-
tion (3.4) for a creeping slide. For the model equations, linear stability analysis gives
that ¢t < ¢x=2c, where c is the wave celerity in the deepest water. Note that when
modelling highly nonlinear waves, a smaller ¢t is usually required for stability. In
this analysis, ¢t = ¢x=4c produced stable and convergent results for all trails.

For the numerical exterior boundaries, two types of conditions are applied: re®ec-
tive and radiation. The re®ective, or no-®ux, boundary condition for the Boussinesq
equations has been examined by previous researchers (Wei & Kirby 1995), and their
methodology is followed here. For the radiation, or open, boundary condition, a
sponge layer is used. The sponge layer is applied in the manner recommended by
Kirby et al . (1998). Run-up and rundown are modelled with the `extrapolation’
moving-boundary algorithm described in Lynett et al . (2002).
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Nomenclature

a wave amplitude

b length along the slope between xl and xr for the tanh slide

c wave celerity

d depth of water above the centre point of the slide, function of time

d0 initial depth of water above the centre point of the slide, i.e. at t = 0

g gravity

h0 characteristic water depth or baseline water depth, function of space

h water depth pro­ le, function of space and time
·h the changing part of the water depth pro­ le ((h ¡ h0)=¯ )

hc baseline water depth at the centre point of the slide (¢h + d)

hc0
initial baseline water depth at the centre point of the slide (¢h + d0)

H total water depth (h + "± )

l0 characteristic horizontal length-scale of the submarine slide

Ls characteristic horizontal side length of the submarine slide

p depth-dependent pressure

S shape factor for tanh slide

t time

tc time-scale of sea®oor motion

tw typical period of wave generated by a speci­ ed sea®oor motion

u, v, w depth-dependent components of velocity in x, y, z

u ¬ , v ¬ magnitude of horizontal velocity components u, v evaluated on z ¬

·u, ·v depth-averaged horizontal velocity components

u horizontal velocity vector, (u; v)

xc, yc horizontal coordinates of the midpoint of the sea®oor movement

xl, xr locations of the left and right in®ection points for the tanh slide pro­ le

z ¬ arbitrary level on which the `extended’ equations are derived

¯ scaled characteristic change in water depth

due to sea®oor motion (¢h=h0)

¢h characteristic, or maximum, change in water depth

due to sea®oor motion

¢t time-step in numerical model

¢x, ¢y space steps in numerical model

" nonlinearity parameter (a=h0)

r horizontal gradient vector

» density of water

³ slope angle

· frequency-dispersion parameter (h0=l0)

± free-surface displacement
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