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Abstract

Based on assumptions of an inviscid fluid and weakly rotational flow, a set of depth-averaged governing equations are
developed to model long internal waves in two horizontal dimensions. These waves are assumed to be weakly nonlinear
and weakly dispersive, existing in a two-layer system with a small density difference between the layers. No restriction is
placed on the bathymetry or the dominant wave propagation direction. A high-order, finite difference numerical algorithm
is developed, formally accurate to(�x)4 in space and(�t)4 in time. The model is checked with known analytical solutions
and experimental data. Real bathymetry case studies are also performed, including simulations of internal waves evolving in
the Strait of Gibraltar and near the island of Dongsha in the China Sea. Numerical results show strong similarities to satellite
images taken over the same locations.
© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The evolution of internal waves and interaction of internal waves with other waves and geological features in the
horizontal plane is not well understood and has been studied to only a small degree. Most existing models include
only one horizontal dimension, or are only weakly two-dimensional. Some of the earliest work made use of the
Korteweg de Vries (KdV) equation[1], which is applicable to uni-directional waves. Many others have made use
of the KdV-type equations, including Lee and Beardsley[2], Farmer[3], Maxworthy[4], Apel et al.[5], and Liu
[6], adding modifications, such as dissipation and shoaling effects, to make the equation more applicable to real
oceanographic situations.

An approach that does include two horizontal dimension effects, however only weakly, is the Kadomtsev and
Petviashvili (K–P)-type equations. These equations have been utilized recently[7–9], applied to situations such as
wave propagation through a narrow channel. The K–P equation requires that the spatial variation of the waveform
in the transverse direction is small compared with that along the direction of wave propagation.

Recently, more advanced models have been developed[10,11], but these too are limited to one horizontal dimen-
sion or only include weak two-dimensional effects. When attempting to model internal wave evolution over real
topography, interaction with islands or other geologic features, a fully two-dimensional model is needed. Observa-
tions by Liu et al.[12] in the China Sea clearly indicate strong two-dimensional wave–wave interactions and the
diffraction and refraction of internal waves by bathymetry and islands.
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In this paper, based on a two-layer fluid system with a small density difference between the layers, a model for
internal wave propagation on the horizontal plane in presented. The model incorporates both weakly nonlinear and
dispersive effects. A high-order numerical algorithm is then developed, using a form similar to that proposed by Wei
and Kirby[13]. Validation of the numerical algorithm is performed by comparing numerical results with existing
analytical solutions and experimental data. The model is also used to simulate internal waves propagating in the
Strait of Gibraltar and in the vicinity of Dongsha Island in the south China Sea. Numerical results show strong
similarities to satellite images taken over the same locations.

2. Governing equations and boundary conditions

The primitive governing equations for internal long waves, propagating in a two-layer fluid system with a free
ocean surface, are presented in this section. The basic physical setup of the model is shown inFig. 1. The interfacial
displacement is represented byη′ (defined as positive upward), the small free surface displacement byζ ′, the
undisturbed upper and lower layer thicknesses byh′

1 andh′
2, and the upper and lower layer densities byρ′

1 andρ′
2.

Noteh′
1 is constant, buth′

2 varies in space. For internal long waves, the linear phase speed is given as (e.g. see[10])

c2
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the phase speed can be approximated as
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0

∼= g
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ρ0

h′
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′
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h′
1 + h′

2
= g�h0, (3)

Fig. 1. Basic formulational setup.
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where

g� = g
�ρ′

ρ0
, (4)

h0 = h′
1h

′
2

h′
1 + h′

2
, (5)

ρ0 = ρ′
2, (6)

and g is the gravity. Therefore, dispersive effects will be governed by the characteristic water depth,h0. The
characteristic length of the wave motion�0 is the horizontal length scale,�0/

√
g�h0 is the time scale, and the

characteristic wave amplitudea0 is the scale of wave motion. With these scales, we can define the following
dimensionless variables:

(x, y) = (x′, y′)
�0

, z = z′

h0
, t =

√
g�h0t

′

�0
, η = η′

a0
, �ρ = �ρ′

ρ0
,
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1, h

′
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h0
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a0�ρ
, (p1, p2) = (p′

1, p
′
2)

ρ0g�a0
, (ρ1, ρ2) = (ρ′

1, ρ
′
2)

ρ0
,

(U, V, u, v) = (U ′, V ′, u′, v′)
ε
√
g�h0

, (W,w) = (W ′, w′)
(ε/µ)

√
g�h0

, (7)

in which the symbol prime (′) denotes dimensional quantities,(U, V, u, v) represents the dimensionless horizontal
velocity components in the upper and lower layers,(W,w) the dimensionless vertical velocity components in the
upper and lower layers, and(p1, p2) represents the dimensionless dynamic pressures. The scale forζ , the free surface
displacement, is much smaller than that for the interfacial wave displacement (e.g. see[14]). Two dimensionless
parameters have been introduced above, which are

ε = a0

h0
, µ = h0

�0
. (8)

It should be noted that in the following analysis, bothε andµ are considered as small parameters. More specifically,
the relationship between nonlinearity and frequency dispersion is assumed to be

O(ε3) = O(µ4) � 1. (9)

This assumption allows one to examine large amplitude internal waves. Naturally, this assumption will lead to a set
of model equations that contain, as subsets, equations of lower order inε, such as that for the typical long wave
expansion, O(ε) = O(µ2). Furthermore, the scaled density difference between the layers,�ρ, will be assumed to
have a very small value, i.e.�ρ = O(µ4) � 1, which is consistent with the Boussinesq approximation.

Assuming that the viscous effects are insignificant, the wave motion can be described by the continuity equation
and Euler’s equations in both the upper and lower layers. In the upper layer, i.e.εη < z < h1+ε �ρ ζ , the primitive
governing equations are in the following dimensionless form:

µ2∇ · U +Wz = 0, (10)

U t + εU · ∇U + ε

µ2
WUz = − 1

ρ1
∇p1, (11)

εWt + ε2U · ∇W + ε2

µ2
WWz = − ε

ρ1
p1z . (12)
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In the lower layer, i.e.−h2 < z < εη, the dimensionless primitive governing equations become

µ2∇ · u + wz = 0, (13)

ut + εu · ∇u + ε

µ2
wuz = − 1

ρ2
∇p2, (14)

εwt + ε2u · ∇w + ε2

µ2
wwz = − ε

ρ2
p2z , (15)

where∇ = (∂/∂x, ∂/∂y) is the horizontal gradient vector, and the subscript the partial derivative.
On the free surface,z = h1 + ε �ρ ζ , the kinematic boundary condition requires

W = µ2�ρ(ζt + εU · ∇ζ ) on z = h1 + ε �ρ ζ. (16)

The dynamic free surface condition demands that the total pressure vanishes, i.e.

p1 = ρ1ζ on z = h1 + ε �ρ ζ. (17)

Along the fluid interface,z = εη(x, y, t), the pressure is continuous, i.e.

p2 = p1 + η on z = εη, (18)

and the kinematic boundary condition requires

W = µ2(ηt + εU · ∇η) on z = εη, (19)

w = µ2(ηt + εu · ∇η) on z = εη. (20)

The above two expressions can be combined to give

W − µ2εU · ∇η = w − µ2εu · ∇η on z = εη. (21)

At the seafloor,z = −h2, the no-flux boundary condition requires

w = −µ2u · ∇h2 on z = −h2. (22)

The exact forms of continuity, written in terms of the depth-averaged horizontal velocity, can be easily derived at
this point. Integration of(13) from −h2 to εη, with the application of boundary conditions(20) and (22)yields

ηt + ∇ · [(h2 + εη)ū] = 0. (23)

For the upper layer, the procedure is the same. Integration of(10) from εη to h1 + ε �ρ ζ , with the application of
boundary conditions(20) and (22)gives

ηt − ∇ · [(h1 − εη)Ū] = O(�ρ), (24)

where

ū = 1

h2 + εη

∫ εη

−h2

u dz, (25)

Ū = 1

h1 − εη

∫ h1

εη

U dz, (26)

are the depth-averaged horizontal velocity vectors in the lower and upper layers, respectively.
The approximate forms of the depth-integrated momentum equations are derived using a perturbation approach. A

detailed derivation of these equations is included inAppendix A. Usingµ2 as the small parameter, the dimensionless
physical variables are expanded as power series ofµ2. Based on the assumption that O(ε3) = O(µ4) � 1, a
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two-component vector equation results for both the upper and lower layers. The volume flux in the upper and lower
layers must be equated as follows:

(h1 − εη)Ū = −(h2 + εη)ū + O(�ρ) = M, (27)

which is the direct result of(23) and (24). With the assumption that the density difference between the two layers
is very small, i.e.�ρ = O(µ4), the depth-averaged momentum equation can be expressed in terms ofM (see
Appendix A):

Mt +
(

1

h1
+ 1

h2

)−1

∇η + ε

(
1

h1
− 1

h2

)
[M · ∇M − (Mη)t ] − ε

1

h3
1

(
1

h1
+ 1

h2

)−1

[(M · ∇h2)M]

+ε2

(
1

h2
1

− 1

h2h1
+ 1

h2
2

)
[(Mη2)t − (M · ∇)(ηM)− η(M · ∇)M] + µ2h1h2

3
∇(∇ · Mt )

−µ2
(

1

h1
+ 1

h2

)−1

[(∇ · Mt )∇ · h2 − 2

h2
(Mt · ∇h2)∇h2 + ∇(Mt · ∇h2)] = O(εµ2). (28)

Note that the momentum flux associated with the change in the free ocean surface,ζ , disappears (seeEqs. (A.28)–
(A.32)). Therefore, the variation of the free surface caused by the internal wave propagation has no effect on the
internal wave itself, to the order of the derived model equations. Conservation of mass, when expressed in volume
flux, simply becomes

ηt + ∇ · M = O(µ4). (29)

Eqs. (28) and (29)constitute the model equations for internal wave propagation in two horizontal dimensions.
The momentum equation can be written in a different form with the aid of the continuity equation. For instance,
if the continuity equation is used to rewrite the nonlinear cubic and quadratic time derivatives in the momentum
equation (28), the followingx- andy-component momentum equations can be obtained:

CXOPt + C1ηx + F� + (F1 + C6Pxx)t = O(εµ2), (30)

CYOQt + C1ηy +G� + (G1 + C6Qyy)t = O(εµ2), (31)

whereP is thex-component of the volume flux vectorM,Q is they-component, and

CXO = 1 − ηC2 + η2C4 + h2xxC7 + h2
2xC8, (32)

F� =C2[2PPx − (QP)y ] + C3(P
2h2x + PQh2y )+ C4[−2ηQPx − 2ηPQy − (ηP 2)x − 2ηQPy − PQηy ]

+C5(ηP
2h2x + ηPQh2y ), (33)

F1 = C6(Qxy)+ C8(Qh2x h2y )+ C7(Pxh2x +Qyh2x + Pyh2x +Qxh2y + Qh2xy), (34)

CYO = 1 − ηC2 + η2C4 + h2yyC7 + h2
2yC8, (35)

G� =C2[2QQy − (QP)x ] + C3(Q
2h2y + PQh2x )+ C4[−2ηQPx − 2ηQQy − (ηQ2)y − 2ηPQx − PQηx ]

+C5(ηQ
2h2y + ηPQh2x ), (36)

G1 = C6(Pxy)+ C8(Ph2x h2y )+ C7(Qyh2y + Pxh2y + Pyh2x +Qxh2x + Ph2xy), (37)
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C1 =
(
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3
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6
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1
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h1

)−1
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2
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. (38)

This rewriting of some of the time derivatives is done because it is numerically more convenient to treat spatial
derivatives than mixed time and space derivatives. The above equations reduce to those derived by Tomasson
and Melville [8] for constant water depth. It should be noted, however, that Tomasson and Melville’s derivation
differs significantly from the one given inAppendix A, which can be straightforwardly extended to fully-nonlinear
wave propagation. Also, all of Tomasson and Melville’s analysis of their derived equations make the simplifying
assumption of weakly two-dimensional waves, while the present model is fully two-dimensional.

3. Numerical model

The numerical scheme employs a high-order predictor–corrector scheme. Similar methods have been successfully
employed by Wei and Kirby[13] and Lynett et al.[15] for modeling surface wave phenomena. The scheme makes
use of centered finite differencing to fourth-order accuracy(�x)4, thereby minimizing numerical truncation errors
in the spatial derivatives. The time and spatial variables are discretized ast = n�t , x = i �x, andy = j �y. The
predictor step is the third-order explicit Adams–Bashforth method[16]:

ηn+1
i,j = ηni,j −

[
�t

12
(23En − 16En−1 + 5En−2)

]
i,j

, (39)

Pn+1
i,j = Pn

i,j −
[
�t

12
(23Fn − 16Fn−1 + 5Fn−2)+ (2Fn

P − 3Fn−1
P + Fn−2

P )

+ (CnXO − 1)(2Pn − 3Pn−1 + Pn−2)

]
i,j

, (40)

Qn+1
i,j =Qn

i,j −
[
�t

12
(23Gn − 16Gn−1 + 5Gn−2)+ (2Gn

P − 3Gn−1
P +Gn−2

P )

+ (CnYO − 1)(2Gn − 3Gn−1 +Gn−2)

]
i,j

, (41)

where

E = Px +Qy, (42)

F = C1ηx + F�, (43)

FP = F1 + F2, (44)

F2 = C6Pxx, (45)

G = C1ηy +G�, (46)
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GP = G1 +G2, (47)

G2 = C6Qyy, (48)

where all time and spatial step subscripts have been dropped (but all terms are evaluated at the same space and time
step).

With the predicted values ofηn+1
i,j , Pn+1

i,j , andQn+1
i,j the fourth-order Adams–Moulton scheme is adapted for the

iterative corrector stage[16]:

ηn+1
i,j = ηni,j −

[
�t

24
(9En+1 + 19En − 5En−1 + En−2)

]
i,j

, (49)

Pn+1
i,j = Pn

i,j −
[
(�t/24)(9Fn+1 + 19Fn − 5Fn−1 + Fn−2)+ (F n+1

C − Fn
C)

Cn+1
XO − C6(30/(12�x2))

]
i,j

, (50)

Qn+1
i,j = Qn

i,j −
[
(�t/24)(9Gn+1 + 19Gn − 5Gn−1 +Gn−2)+ (Gn+1

C −Gn
C)

Cn+1
YO − C6(30/(12�y2))

]
i,j

, (51)

where

FC = F1 + F3, (52)

F3 = C6
−Pn

i+2,j + 16Pn
i+1,j + 16Pn

i−1,j − Pn
i−2,j

12�x2
, (53)

GC = G1 +G3, (54)

G3 = C6
−Qn

i,j+2 + 16Qn
i,j+1 + 16Qn

i,j−1 −Qn
i,j−2

12�y2
. (55)

The corrector step is iterated if the absolute error inη, P , orQ at any grid point is greater than 10−6. For small
nonlinearity,ε < 0.1, the corrector step typically requires eight or less iterations. As nonlinearity increases, however,
so do the required iterations; a numerical run withε = 0.3 may require 20 iterations before satisfying the convergence
criterion.

4. Boundary conditions

For a solid boundary with outward normal vector�n, the kinematic boundary condition is given as

M · �n = 0 along the wall. (56)

With the kinematic property, the momentumequation (28), requires that

∇η · �n = O(ε, µ2) along the wall. (57)

Note that when the boundary wall is a straight line, i.e.∇·�n = 0, which will always be the case in the results presented
in this paper,(57)satisfies the nonlinear terms in(28), i.e.∇η· �n = O(µ2). To simplify the numerical implementation
of the above boundary condition(57), the normal gradient of the free surface is set to zero. Therefore, it must be
noted that the reflective wall boundary condition satisfies a low-order (inµ2) version of the model momentum
equation (28). For the two-dimensional problem, the following additional condition is required:

∂MT

∂n
= O(ε, µ2) along the wall, (58)
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whereMT is the tangential flux component along the boundary. This condition can be found by examination of the
linear, nondispersive form of the tangential-flux momentum equation, along with substitution of(57). To simplify
the numerical implementation of the above boundary condition(58), the normal gradient of the tangential flux is
set to zero. Note that the boundary conditions(57) and (58)are required due to the second-order spatial derivatives
included in the modelequations (28) and (29). The above three conditions form a complete set of boundary conditions
for a solid wall.

It is also desirable to be able to implement an open, or radiation, boundary condition, allowing the waves to
propagate through the boundary and exit the computational domain. The low-order radiation condition employed
here has been used successfully by Wang[17] in a similar scheme, and is given as

∂R

∂t
∓ c

∂R

∂n
= 0 along the boundary, (59)

whereR is any variableη, P , orQ, andc is the wave celerity. In nondimensional terms, the celerity is set equal
to 1. Recent work done on the subject of radiation conditions would show this description to be simplistic, but the
numerical application of(59)yields acceptable results. It should also be noted that there was always a small reflection
off these boundaries, on the order of 5% of the incident wave height. This type of reflection is acceptable for most
cases where single soliton evolution is modeled, but for cases with continuous wave trains, the small reflections
accumulate and will eventually destroy the simulation. For these simulations a different boundary condition is
required, such as a sponge layer. Sponge layers can damp out a wide range of frequencies, but typically need to be
a couple of wavelengths wide Wei and Kirby[13], thereby requiring additional computational resources.

When the radiation conditions are applied the solution on the boundary would tend to oscillate around the
eventual solution during the iterative corrector stage. This oscillation would occasionally prevent the solution from
converging. To eliminate this problem, an over-relaxation technique was implemented near the open boundaries.
The over-relaxation expression is

R = (1 − δ)Rc + δRp, (60)

whereδ is the over-relaxation coefficient between 0 and 1,Rc the variable, eitherη, P , or Q, from the current
iteration, andRp is the variable from the previous iteration. Aδ value of 0.45 gave good results on all numerical
runs.

5. Model validation

The first check on the numerical model is to make certain that mass is conserved. The procedure for checking
mass is as follows: a solitary wave was placed in a domain with bathymetry profile that varied in both thex- and
y-directions. All of the numerical boundaries are solid wall boundaries. Simulations were run for variousε and
h2/h1 combinations. For mass conservation, it is required that

∂

∂t

∫
length

∫
width

η dx dy = 0. (61)

Typical grid spacing of�x = �y = 0.025 (corresponding to 40 grid points per wavelength) and�t = 0.01 were
used for these and all other simulations described in this paper. For all simulations, mass was conserved to within
0.5% of the initial mass.

The second check of the model is to make certain that permanent solutions, in the analytical sense, must also
remain numerically permanent. Two permanent solutions to our two-layer model will be examined: a solitary wave
and a monotonic bore. The solitary wave examined here is a solution to the equations without cubic nonlinearity
and with constant depth. The solitary wave has the familiar dimensionless form

η = sech2
(
x − ct

l

)
, (62)
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where

c = 1 + ε(h2 − h1)

2h1h2
, (63)

l = 2h1h2√
3ε(h2 − h1)

. (64)

The above soliton solution can be derived from the modelequations (28) and (29)for the constant water depth
case[18]. A solitary wave of modest nonlinearity,ε = 0.2, propagating through layers of constant thickness was
run to test for permanency. To make sure that the cubic nonlinearity had no effect on the solution, these terms are
neglected for this simulation. A lower to upper water depth ratio of 2.0 is used. The wave was allowed to propagate
for 15 wavelengths, resulting in no change in form. The numerical waveform after 15 wavelengths is compared
to the analytical waveform inFig. 2. Additionally, an identical simulation was performed, except that the cubic
nonlinearity was not forced to zero. This waveform is also plotted inFig. 2. Although the cubic nonlinear terms
are small in magnitude, they have a clear effect on the waveform. The cubic terms disrupt the balance between
nonlinearity and frequency dispersion, resulting in a deformed, nonsymmetric wave shape after 15 wavelengths of
propagation.

To ensure that cubic nonlinearity is being computed correctly, we check for permanency of a monotonic bore.
The bore, a permanent solution of the governing equations when cubic nonlinearity is important, has the following

Fig. 2. Solitary waveform from analytical solution (—), numerical solution without cubic nonlinearity (· - ·), and numerical solution with cubic
nonlinearity (– – –).
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dimensionless solution[18,19]:

η = 1

2

[
1 + tanh

(
x − ct

l

)]
, (65)

where

c = 1 + d2
−2

8d−3
, (66)

l =
√

16µ2d−1d−3

3d2
−2

, (67)

and

dn = hn2 + (−1)n−1hn1. (68)

A numerical simulation withε = 0.2 and a lower to upper water depth ratio of 1.1 was carried out. The numerical
wave profile after 15 wavelengths of propagation is plotted with the analytical solution inFig. 3, and is numerically
permanent.

A frequently examined aspect of internal wave propagation is that of shoaling. The expected behavior of an
internal wave of depression as it propagates into a shallower region is the decomposition into a train of oscillatory
waves. This has been recorded in the field and laboratory, and a numerical simulation depicting the evolution is

Fig. 3. Comparisons between numerical (· - ·) and analytical (—) bore waveform.
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Fig. 4. Numerical simulation of an internal wave, with initial height of 10 m, evolving over a shelf. The line plotted atz = 0 m shows the
nonlinear numerical results, the line plotted atz = 15 m shows the nonlinear results with cubic nonlinearity neglected, and the line plotted at
z = 30 m indicates the linear waveform. Note that the waveforms offset from the interface (z = 0 m) have been manually offset for easier
viewing; all results actually exist at the interface.

shown inFig. 4. The physical parameters of the numerical simulation are taking from Liu et al.[12], and model
typical internal wave shoaling off the coast of Taiwan. A solitary wave with initial amplitude of 10 m is located
between a lower layer of depth 100 m and a 60 m thick upper layer. The initial nonlinearity of this wave isε = 0.26.
The horizontal length of the slope is 25 km, and the shelf lower layer depth is 40 m. Liu et al.’s numerical model is
based on the KdV-type equation, and exhibits very similar waveform compared to the model presented here. The
back face of the soliton steepens as it travels up the shelf, and after passing the shelf break it degenerates into a rank
ordered series of waves.

Also shown inFig. 4are the numerical waveforms without cubic nonlinearity (plotted onz = 15 m) and without
nonlinearity at all (plotted onz = 30 m). The linear results show a initially slower moving wave, until the critical
depth is reached. Note the larger amplitude of the oscillatory trailing waves associated with the nonlinear results.
The nonlinear interactions are passing energy from the primary frequency into higher frequencies. This energy
transfer cannot occur with linear equations, and the result is a much less steep, smoother tail. The differences
between the nonlinear results with and without cubic nonlinearity are significantly less obvious. The results with
cubic nonlinearity have a slightly later arrival time that those without, and the additional nonlinearity appears to
be creating a longer train of oscillatory waves behind the leading wave, due to the higher order nonlinear energy
transfer. The leading wave height in the results with cubic nonlinearity is about 6% less that those without the cubic
terms, due to the cubic nonlinear energy transfer into the trailing waves.
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The shelf depth represents nearly the shallowest depth that this model can accommodate for this setup. If the
lower layer thickness was less on the shelf, say 30 m, the waveform becomes unstable, represented by short waves
created along the back face that are always 2�x in length, regardless of the grid size. This numerical observation is
consistent with reported numerical and experimental work[20,21], where it was found that for a lower layer shelf
depth witha/h2 > 0.3 (equal to 0.25 in this simulation), mixing along the back face of the wave occurs, due to
wave breaking, as the wave reaches the shelf break. This observation indicates the practical importance of including
a numerical breaking wave criteria, which is not done here.

To test the model accuracy against experiment, data is taken from Helfrich[21]. In these experiments, a solitary
wave is generated and allowed to travel up a slope. The upper layer thickness is 10 cm, the initial lower layer thickness
is 26 cm, and slope is 0.05, or roughly 2.5 wavelengths long. The incident wave height is 3.6 cm (ε = 0.27).Fig. 5
shows the time series comparisons between numerics and experiment; time is scaled byc0/L, whereL is the
horizontal length of the slope.Fig. 5(a) is taken at the beginning of the slope, and is essentially the incident wave
condition. The time series shown inFig. 5(b) is at a location 2/3 up the slope. Both numerical and experimental
waves show a clear shoaled form, with an increased amplitude and steepened back face. The numerical wave reaches
the location slightly faster, and has a slightly larger amplitude; a difference in the order of 10% of the experimental
period and less than 5% of the wave height. The larger amplitude in the numerical simulation is most likely due to
the exclusion of dissipative effects, and the faster phase speed is probably due to the larger amplitude and the fact
that the experiments are not truly a two-layer system. The experiments are performed in a stratified system with
fresh and salt water, where the interfacial thickness is nearly 2 cm, and is therefore not a two-layer system. This

Fig. 5. Comparison between numerical (—) and experimental (· · ·) waves traveling up a slope.
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comparison is meant to demonstrate the differences one might expect when using a two-layer model to simulation
real oceanographic internal waves. The waveform should be very similar, but phase speeds may differ, as was
demonstrated by Helfrich and Melville[20].

Model validation on two horizontal dimensions is difficult, due to a lack of two-dimensional internal wave data.
Thus, the two-dimensional validation must be performed qualitatively, primarily using satellite imagery. First, we
investigate possibly the most thoroughly examined internal wave location, the Strait of Gibraltar. Internal solitons,
as they exit the Strait and enter the Mediterranean Sea, can have amplitudes greater than 80 m[22]. Nearly all
the published field data show leading solitons with amplitudes of at least 40 m. This is unfortunate, as the present
model cannot simulate a wave of this large height. In the Strait, the equivalent single layer depth,h0, is about
80 m. Therefore, owing to the weakly nonlinear assumption, the maximum wave height that can be modeled is
approximately 25 m, and comparisons with field data will not be helpful. Admittedly, the model cannot predict
the higher order nonlinearities that exist in this region, but a simulation of a smaller wave may indicate similar
two-dimensional and topographic effects that can be seen in aerial imagery.

The bathymetry in the Strait was taken from the Smith and Sandwell 5 min database, and was interpolated using
a bilinear routine to fit the numerical grid. Breaking and runup are not included in this model, and thus vertical
walls are artificially placed along the banks of the Strait in shallow water. The walls are placed near the lower
layer depth of 80 m. The lower layer depth profile is shown inFig. 6(a). Also in this figure are the locations of
the solid boundaries, shown by the gray mesh. An initial solitary wave with an amplitude of 20 m (ε = 0.30) is
placed in the domain, located atx = 5 km and traveling in the positivex-direction. The lower layer depth at the
initial location of the wave is 500 m, and the upper layer thickness, which is constant everywhere, is 80 m. The
evolution of the wave is shown inFig. 6(b)–(d). InFig. 6(b), taken 4 h after the start of the simulation, the initially
straight wave front is now bow-shaped as the center of the wave front, in the deepest water, travels faster than the
rest of the wave.Fig. 6(c), 7 h into the simulation, shows the wave exiting the Strait, and diffracting into the open

Fig. 6. Numerical simulation of internal wave passing through the Strait of Gibraltar. Plot (a) shows the lower layer depth profile, and plots
(b)–(d) are successive snapshots.
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Fig. 7. (a) Numerical snapshot from a linear simulation, and (b) the same snapshot from a nonlinear simulation. Cross sections aty = 55 km
from the snapshots (a) and (b) are shown in (c), where the dotted line is the nonlinear results and the solid line is the linear profile.

water. At the southern tip of the Strait, there is now a positive elevation wave trailing the lead depression wave,
created as the wave shoals in the locally shallower water. At this time the maximum depression of the leading wave
has decreased to near 5 m, due to diffraction and dispersion effects. Ten hours into the simulation, shown inFig.
6(d), the solitary wave has degenerated into a complicated waveform. The leading amplitude has diminished to
roughly 2 m (1/10 of the original wave height), and is followed by numerous smaller amplitude and wavelength
disturbances.

To demonstrate the effects of nonlinearity, an additional numerical simulation was run utilizing the linear form
of the modelequations (28) and (29). A snapshot from the linear test, along with the corresponding image from
the nonlinear simulation, is shown inFig. 7. The conclusions drawn from this comparison will be similar to those
derived while discussing 1D shoaling (Fig. 4). The nonlinear wave front travels with a greater velocity, and more
energy is transferred into the trailing waves, as evident by the greater amplitude. The frequency of the oscilla-
tory trailing waves is much higher in the nonlinear case, by roughly a factor of 2. These steep, high-frequency
trailing waves are often captured in satellite imagery, and appear to be dominantly caused by nonlinear interac-
tions.

In Fig. 8 two spatial snapshots are shown, one from the numerical results (t = 6 h into simulation) and another
taken from a satellite image. The location of images is at the southeastern tip of the Strait, at the entrance to the
Mediterranean Sea (x = 40 km,y = 50 km in Fig. 6). The numerical snapshot presented was chosen based on
similarity to the satellite image. Note that the viewing angles of the images are not identical, but the scale and total
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Fig. 8. (a) Numerical snapshot of wave passing through the Strait of Gibraltar, and (b) a satellite image of the same location.

area of the images are similar. The wave fronts are oriented in the same way, and the train of decreasing wavelength
waves are represented in both images.

Another location known for internal waves is the south China Sea. In this region there are numerous SAR images
showing long wave fronts stretching hundreds of kilometers (see[12]). Internal waves are created due to interactions
between outflow from the China Sea and the Kuroshio current, south of Taiwan and north of the Philippines. Traveling
to the west, waves encounter nearly no shallow water until reaching the continental shelf of China, save near the
small island of Dongsha. As the internal waves travel west and approach Dongsha, shoaling and refraction become
dominant processes.

Using the bathymetry near Dongsha, from the Smith and Sandwell database, a solitary wave approaching and
interacting with the island is simulated. The lower layer depth is shown inFig. 9(a); the upper layer depth is 100 m
and constant everywhere. For simplicity, the island is modeled as an octagon. At locations where the water depth
becomes shallow, notably northeast and northwest of the island, it was necessary to artificially limit the shallowness
of the water. The reason for this is that as the internal wave enters this very shallow water, it breaks. Numerically,
wave breaking is usually followed by overflow in the program and an end to the simulation. Although breaking
on the northern side of the island is likely an important physical process, we seek to eliminate it so that wave
interaction behind the island can be investigated. For this reason, the shallowness of the lower layer was limited to
50 m. The initial solitary wave amplitude is 15 m (ε = 0.18), located atx = 58 km, and traveling in the negative
x-direction.Fig. 9(b), taken 9 h after the start of the simulation, shows the wave interacting with the east side of
the island. The wave front is irregular, as the shallow water to the north of the island has significantly slowed the
wave in this region. Also, part of the wave front has reflected off the east side of the island, and is traveling now to
the east. Note that for the most part this reflected wave is a nonphysical result of the manner in which the island is
modeled. As shown in experimental studies[21], when internal waves shoal and runup a slope, very little energy
is reflected. This difference is expected, as a vertical wall at a finite depth is a poor model for a slope into zero
depth.

In Fig. 9(c), 13 h into the simulation, the wave continues to travel past the island, and begins to diffract be-
hind it. By Fig. 9(d), 6 h later, the wave front has completely passed the island, and diffracting waves from the
north and south interact. This type of complicated wave–wave interaction pattern can also be seen in the satel-
lite imagery.Fig. 10shows two images, one numerical (a) and the other satellite (b). The satellite image shows
three separate west-moving wave fronts, one significantly before interacting with the island, one immediately
before the island, and another behind the island. The numerical image shows the interface displacement of the
same wave at three different times, corresponding to similar wave locations in the satellite image, superimposed
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Fig. 9. (a) Numerical simulation of internal wave passing Dongsha Island. Plot (a) shows the lower layer depth profile, and plots (b)–(d) are
successive snapshots.

on the same plot. Note that area covered by the numerical image is less than that in the satellite image. The
white outline of the island in the numerical image and the black outline of the island in the satellite image are
the same physical size. An interesting comparison is the wave field behind the island. The satellite image shows
many short wavelength waves obliquely interacting with other waves. The numerical plot shows a similar wave
field.

Fig. 10. (a) Overlay of the same numerical wave passing Dongsha Island at three different times, and (b) a satellite image showing three separate
internal wave groups.
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6. Conclusions

A set of depth-averaged governing equations has been derived for modeling weakly nonlinear and weakly dis-
persive internal waves. The modeled system consists of a two-layer fluid with a small density difference between
the layers. A higher-order nonlinear assumption is made, allowing for the inclusion of both cubic and quadratic
nonlinear terms in the governing equations. The numerical predictor–corrector scheme utilizes fourth-order finite
differences, and is formally accurate to(�x)4 in space and(�t)4 in time. The numerical model is checked for con-
servation, permanent analytical solutions, and wave shoaling over a slope–shelf topography. Using real bathymetry,
internal wave evolution in the Strait of Gibraltar and wave diffraction around Dongsha Island are simulated. Al-
though there are uncertainties in interpreting the satellite images and in specifying the initial internal waveforms for
the numerical model, the results of the numerical simulations show strong similarities with satellite images of the
same locations, indicating that the presented model captures two-dimensional and topographical effects. To further
advance the modeling of internal wave propagation one needs to parameterize the effects of stratification and energy
dissipation due to breaking. Therefore, a higher-order nonlinear model, along with a wave breaking model that can
be used by depth-integrated equations, is needed. Accurate field observations and laboratory experimental data are
essential for this goal.

Appendix A. Derivation of model equations

Usingµ2 as the small parameter, we can expand the dimensionless physical variables as power series ofµ2.

f =
∞∑
n=0

µ2nfn (f = p1, p2,U,u), (A.1)

q =
∞∑
n=1

µ2nqn (q = W,w). (A.2)

Furthermore, we will adopt the following assumption on the vorticity field. We assume that the vertical vorticity
components,(Uy −Vx) and(uy −vx), are of O(1), while the horizontal vorticity components are weaker and satisfy
the following conditions:

∂

∂z
(U0,u0) = 0, (A.3)

∂

∂z
(U1,u1) = ∇(W1, w1). (A.4)

Consequently, from(A.3), the leading order horizontal velocity components are independent of the vertical coordi-
nate, i.e.

U0 = U0(x, y, t), u0 = u0(x, y, t). (A.5)

Substituting(A.1) and (A.2)into the continuityequations (10) and (13)and the boundary conditions(A.8) and
(A.9), we collect the leading order terms as

∇ · U0 +W1z = 0, εη < z < h1 + ε �ρ ζ, (A.6)

∇ · u0 + w1z = 0, −h2 < z < εη, (A.7)

W1 = 0 on z = h1 + ε �ρ ζ, (A.8)

w1 = −u0 · ∇h2 on z = −h2. (A.9)
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Integrating(A.6) and (A.7)with respect toz and using(A.8) and (A.9)to determine the integration constants, we
obtain the vertical profile of the following vertical velocity components:

w1 = −z∇ · u0 − ∇ · (h2u0) = −zQ0 + R0, (A.10)

W1 = −z∇ · (U0)+ h1 ∇U0 = −zS0 + T0, (A.11)

where

Q0 = ∇ · u0, (A.12)

R0 = −∇ · (h2u0), (A.13)

S0 = ∇ · U0, (A.14)

T0 = h1∇ · U0, (A.15)

andQ0, R0, S0, andT0 are scalar quantities that are functions ofx, y, andt .
Similarly, integrating(A.4) with respect toz with information fromEqs. (A.10) and (A.11), we can find the

second-order components of the horizontal velocities:

U1 = −1
2z

2 ∇S0 + z∇T0 + C1(x, y, t), (A.16)

u1 = −1
2z

2 ∇Q0 + z∇R0 + C2(x, y, t), (A.17)

in whichC1 andC2 are unknown functions to be determined. Up to O(µ2), the horizontal velocity components can
be expressed as

U = U0(x, y, t)+ µ2
{
−1

2z
2 ∇S0 + z∇T0 + C1(x, y, t)

}
, εη < z < h1 + ε �ρ ζ, (A.18)

u = u0(x, y, t)+ µ2
{
−1

2z
2 ∇Q0 + z∇R0 + C2(x, y, t)

}
, −h2 < z < εη. (A.19)

Now, we can define the depth-averaged horizontal velocity vectors,Ū(x, y, t) andū(x, y, t). Integration of(A.18)
and (A.19)through the respective layers and substitution of(A.18) and (A.19)yield the following relationships:

U = Ū − µ2[(1
2z

2 − 1
6h

2
1)∇S̄ − (1

2h1 − z)∇T̄ ] + O(εµ2,�ρ εµ2, µ4), (A.20)

u = ū − µ2[(1
2z

2 − 1
6h

2
2)∇Q̄− (1

2h2 − z)∇R̄] + O(εµ2, µ4), (A.21)

where the scalars̄Q, R̄, S̄, andT̄ are defined as

Q̄ = ∇ · ū, (A.22)

R̄ = −∇ · (h2ū), (A.23)

S̄ = ∇ · Ū, (A.24)

T̄ = h1∇ · Ū. (A.25)

Note thatŪ = U0 + O(µ2) andū = u0 + O(µ2) have been used in(A.20) and (A.21). Moreover, O(ε3) = O(µ4)

has been employed. The truncation errors due to the different parameters, such as�ρ, will be carried through until
the end of the derivation, even though they are of identical order to other noted truncations. This is done to make
the process of following the derivation, including intermediate steps, easier for the reader.
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The pressure field in both fluids must now be determined. This can be accomplished by approximating the vertical
momentumequations (12) and (15)as

ε

ρ1
p1z = −µ2(εW1t + ε2U0 · ∇W1 + ε2W1W1z)+ O(µ4), εη < z < h1 + ε �ρ ζ, (A.26)

ε

ρ2
p2z = −µ2(εw1t + ε2u0 · ∇w1 + ε2w1w1z)+ O(µ4), −h2 < z < εη. (A.27)

We can integrate the equations above with respect toz and apply the boundary conditions(17) and (18)to find the
pressure field as

p1 = ρ1ζ − µ2ρ1[−1
2(z

2 − h2
1)S̄ + (z− h1)T̄ ]t + O(εµ2,�ρ εµ2, µ4), εη < z < h1 + ε �ρ ζ, (A.28)

p2 = p1z=εη + η − µ2ρ2[−1
2z

2Q̄+ zR̄]t + O(εµ2, µ4), −h2 < z < εη. (A.29)

It is noted here that(A.10) and (A.11)have been used in deriving(A.28) and (A.29). To obtain the governing
equation forŪ, we substitute(A.20) and (A.28)into (11), yielding the following equation:

Ū t + εŪ · ∇Ū + ∇ζ − µ2(1
3h

2
1)∇S̄t = O(εµ2,�ρ εµ2, µ4). (A.30)

To obtain the governing equation for̄u, we substitute(A.20) and (A.28)into (11), yielding the following
equation:

ūt + εū · ∇ū + 1

ρ2
∇(ρ1ζ + η)+ µ2

[
h2

2

6
∇Q̄+ h2

2
∇R̄

]
t

= O(εµ2,�ρ εµ2, µ4). (A.31)

The above equations are the coupled governing equations, written in terms ofŪ, ū, andη, for weakly nonlin-
ear, weakly dispersive internal waves. At this point, the layer momentum equations are combined. The layer
momentum equations are first multiplied by the respective layer density, and then subtracted from each other,
giving

[ρ2ūt − ρ1Ū t ] + ε[ρ2u · ∇ū − ρ1U · ∇Ū] + ∇η + µ2{1
6ρ2h

2
2∇(∇ · ū)− 1

2ρ2h2∇[∇ · (h2ū)]

+µ2(1
3ρ1h

2
1)∇(∇ · Ū)}t = O(εµ2,�ρ εµ2, µ4). (A.32)

Note that the momentum flux associated with the change in the free ocean surface,∇ζ , cancels out when the
two equations are subtracted from one another. Therefore, the variation in the free surface caused by the in-
ternal wave propagation has no effect on the internal wave itself, to the order of the derived model
equations.

The mass flux in the upper and lower layers can be equated as follows:

(h1 − εη)Ū = −(h2 + εη)ū + O(�ρ) = M, (A.33)

which is taken directly from(23) and (24). The new variableM = (P,Q), the lower layer flux, is the variable that
the governing equations will be in terms of. Before substitution of(A.33) into the momentumequations (A.32) and
(A.33) is expanded in terms ofε:

Ū = − 1

h1 − εη
M = − 1

h1

(
1 + εη

h1
+ ε2η2

h2
1

)
M + O(ε3,�ρ), (A.34)

ū = 1

h2 + εη
M = − 1

h2

(
1 − εη

h2
+ ε2η2

h2
2

)
M + O(ε3,�ρ). (A.35)
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Substituting the above expressions into the momentum equation, along with the assumptionρ2/ρ1 = 1 + O(µ4)

and a great deal of algebra, gives the final momentum equation:

Mt +
(

1

h1
+ 1

h2

)−1

∇η + ε

(
1

h1
− 1

h2

)
[M · ∇M − (Mη)t ] − ε

1

h3
1

(
1

h1
+ 1

h2

)−1

[(M · ∇h2)M]

+ ε2

(
1

h2
1

− 1

h2h1
+ 1

h2
2

)
[(Mη2)t − (M · ∇)(ηM)− η(M · ∇)M] + µ2h1h2

3
∇(∇ · Mt )

−µ2
(

1

h1
+ 1

h2

)−1 [
(∇ · Mt )∇ · h2 − 2

h2
(Mt · ∇h2)∇h2 + ∇(Mt · ∇h2)

]
= O(ε3, εµ2, µ4,�ρ).

(A.36)

Note that according to the assumption that O(ε3) = O(µ4), the largest of the truncation errors is the O(εµ2). This
term has an equivalentµ error of O(µ10/3), while the other three terms have an equivalent error of O(µ4).
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