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Abstract

In this paper, a moving boundary technique is developed to investigate wave runup and rundown with depth-integrated

equations. Highly nonlinear and weakly dispersive equations are solved using a high-order finite difference scheme. An eddy

viscosity model is adopted for wave breaking so as to investigate breaking wave runup. The moving boundary technique utilizes

linear extrapolation through the wet–dry boundary and into the dry region. Nonbreaking and breaking solitary wave runup is

accurately predicted by the proposed model, yielding a validation of both the wave breaking parameterization and the moving

boundary technique. Two-dimensional wave runup in a parabolic basin and around a conical island is investigated, and

agreement with published data is excellent. Finally, the propagation and runup of a solitary wave in a trapezoidal channel is

examined. D 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The past decade saw the advent and widespread

applications of Boussinesq-type equation models for

studying wave propagation in one and two horizontal

dimensions. The conventional Boussinesq equations

(Peregrine, 1967) had two major limitations: (1) The

depth-averaged model poorly described the frequency

dispersion of wave propagation in intermediate depths,

and (2) the weakly nonlinear assumption limited the

largest wave height that could accurately be modeled.

The dispersion properties of the conventional Boussi-

nesq equation model have been improved by modify-

ing the dispersive terms (Madsen and Sorensen, 1992)

or using a reference velocity at a specified depth

(Nwogu, 1993). These techniques yield a set of equa-

tions whose linear dispersion relation can be adjusted

such that the resulting intermediate-depth dispersion

characteristics are close to the true linear solution. Liu

(1994) and Wei et al. (1995) presented a set of highly

nonlinear Boussinesq-type equations that not only can

be applied to intermediate water depth but also are

capable of simulating wave propagation with strong

nonlinear interaction. Wei et al. (1995) have also

developed a high-order numerical scheme to solve

these equations. All of these efforts successfully

extended the usage of the Boussinesq-type equation

model, such that wave evolution from relatively deep

water to the breaking point could be accurately cap-

tured.

Wave propagation using Boussinesq-type equations

is now well simulated and understood, but the process

of runup and rundown is not. Shoreline boundaries

may move significantly under the temporal influence

of incident waves. A numerical model should be able
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to take into account such variations correctly in order

to obtain realistic flow patterns.

Researchers generally use a fixed grid, finite differ-

ence or finite element method to solve the Boussi-

nesq-type equations. Using a fixed grid numerical

model to solve a moving boundary problem can lead

to difficulties related to the loss of mass conservation

and instabilities in the computations (Leendertse,

1987) as a result of imposing discrete fixed incre-

ments to the extent of wetting and drying areas

(Balzano, 1998). To reduce the computational insta-

bilities near the wet–dry interface, some researchers

added bottom friction into the momentum equations.

However, a numerical model should be stable even

without using bottom friction dissipation.

Zelt (1991) used a Lagrangian form of the Boussi-

nesq-type equations to simulate shoreline movement.

This model produced maximum runup values that

compared well with experimental values, but the shape

of the wave as it traveled up the slope did not compare

as favorably. A handful of others have utilized Lagran-

gian techniques with depth-integrated equation models

to simulate a moving shoreline (e.g., Petera and

Nassehi, 1996; Gopalakrishnan, 1989). Another treat-

ment of moving boundary problem is employing a slot

or permeable-seabed technique (Tao, 1983, 1984). The

first application of the permeable slot with a Boussi-

nesq-type model (Madsen et al., 1997) yielded runup

errors on the order of 10% of the maximum. Modifi-

cations have been made to this permeable slot techni-

que (Kennedy et al., 2000), increasing the accuracy,

but it was also shown that the empirical coefficients

that govern the technique cannot be universally deter-

mined, due to numerical stability problems (Chen et

al., 2000).

In this paper, we present a new moving boundary

treatment for wave propagation models. The moving

boundary algorithm is conceptually simple, easy to

implement, and can be employed by different numer-

ical schemes (i.e., finite difference and finite element)

utilizing depth-integrated equations. The moving

boundary technique utilizes linear extrapolation near

the wet–dry boundary, thereby allowing the real

boundary location to exist in-between nodal points.

The model is compared with the classic Carrier and

Greenspan (1958) solution for monochromatic long

wave runup on a constant slope. As another one

horizontal dimension test, the solitary wave runup

experiments of Synolakis (1986, 1987), which range

from nonbreaking to breaking waves, are recreated

numerically. To test the accuracy of two horizontal

dimension moving boundary problems, three cases are

examined: wave oscillations in a parabolic basin,

solitary wave interaction with a conical island, and

wave evolution in a trapezoidal channel.

2. Model equations and numerical scheme

The model equations to be utilized in this paper are

the highly nonlinear, weakly dispersive wave equa-

tions, given in dimensional form (e.g., Liu, 1994):

ft þ E ¼ 0, uat þ F ¼ 0 ð1Þ

where

E ¼ j � ½ðhþ fÞua� �j � ðhþ fÞ
�

	 1

6
ðf2 � fhþ h2Þ � 1

2
z2a

� �
jðj � uaÞ

�

þ 1

2
ðf � hÞ � za

� �
j½j � ðhuaÞ�

��
ð2Þ

F ¼ ua �jua þ gjf

þ 1

2
z2ajðj � uatÞ þ zaj½j � ðhuatÞ�

� �
þ f½j � ðhuaÞ�j½j � ðhuaÞ� �j½fðj � ðhuatÞ�
þ ðua �jzaÞj½j � ðhuaÞ�g

þ
�
zaj½ua �jðj � ðhuaÞ�

þ zaðua �jzaÞjðj � uaÞþ
z2a
2
j½ua �jðj � uaÞ�

�

þj � f2

2
j � uat � fua �j½j � ðhuaÞþ�

�

þ f½j � ðhuaÞ�j � ua

�

þj
f2

2
½ðj � uaÞ2 � ua �jðj � uaÞ�

� �
ð3Þ

where f is the free surface elevation, h is the local

water depth, and ua=(ua,va) is the reference horizontal
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velocity. The velocity is evaluated at the elevation

za =� 0.531h, as recommended by Nwogu (1993),

based on optimum agreement of the governing equa-

tions with the linear dispersion relation. Wherever h is

negative (initially dry land), this relationship is set to

za =� h, so as to avoid the evaluation of ua under the

seafloor. Two dimensionless, characteristic coeffi-

cients can be given as

e ¼ a=h, l ¼ h=k ð4Þ

where a is the wave amplitude and k is the horizontal

length scale. e is indicative of the importance of

nonlinearity and is assumed to be O(1) in Eqs. (1)–

(3); l represents frequency dispersion and O(l2)b1.

The order of magnitude of accuracy of these equations

is O(l4). Note that the above momentum equation,

Eq. (3), is slightly different from that presented by

Wei et al. (1995). This difference is caused by the

omission of some O(l2) terms in Wei et al. in their

conversion of 1/2j(ua
2) to ua�jua. These neglected

terms vanish only if j	 ua = 0, which, however,

does not imply the irrotationality of the flow field.

In fact, j	 ua is of O(l2). A more mathematically

detailed explanation can be found in Hsiao and Liu (in

press).

The parameterizations, Rf and Rb, account for the

effects of bottom friction and wave breaking, respec-

tively. Bottom friction is described in the quadratic

form:

Rf ¼
f

hþ f
uaAuaA ð5Þ

where f is a bottom friction coefficient, typically in the

range of 10� 3–10� 2, depending on the Reynolds

number and seafloor condition. To simulate the effects

of wave breaking, the eddy viscosity model (Zelt,

1991; Kennedy et al., 2000) is used here. Readers are

directed to Kennedy et al. (2000) for a thorough

description and validation of the breaking model,

and the coefficients and thresholds given therein are

used for all the simulations presented in this paper.

The model used for all the simulations in this paper

is nicknamed COULWAVE, for Cornell University

Long and Intermediate Wave Modeling Package. This

model has the ability to simulate a wide range of long

wave problems, including interaction with porous

coastal structures (Lynett et al., 2000), wave gener-

ation by seafloor movements such as landslides

(Lynett and Liu, in press (a)), and internal wave

propagation and evolution (Lynett and Liu, in press

(b)). The numerical model utilizes a predictor–cor-

rector time-stepping scheme, accurate to (Dt4), where

Dt is the time step. Similar numerical schemes have

been successfully employed by Wei et al. (1995) for

modeling surface wave phenomena. Assume now that

the numerical simulation is at time n, where all

physical values (free surface and velocity) at time n,

and previous times, are known. To determine the

physical values at the next time step n + 1, the explicit

predictor is first applied:

fnþ1
i, j ¼ fni, j �

Dt

12
ð23En

i, j � 16En�1
i, j þ 5En�2

i, j Þ ð6Þ

ðuaÞnþ1
i, j ¼ ðuaÞni, j �

Dt

12
ð23Fn

i, j � 16Fn�1
i, j

þ 5Fn�2
i, j Þ ð7Þ

where n represents the time index, i the x-space index,

and j the y-space index (x and y make up the

horizontal plane). Thus, in order to start a simulation,

initial conditions from three time levels are required.

Now, with an initial estimate of the physical values at

the new time level, the implicit corrector equations

can be applied:

fnþ1
i,j ¼ fni, j �

Dt

24
ð9Enþ1

i, j þ 19En
i, j � 5En�1

i, j

þ En�2
i, j Þ ð8Þ

ðuaÞnþ1
i, j ¼ ðuaÞni, j �

Dt
24

ð9Fnþ1
i, j þ 19Fn

i, j

� 5Fn�1
i, j þ Fn�2

i, j Þ ð9Þ

These equations are solved with Jacobi iteration, so

the calculation of En + 1 and Fn + 1 is performed with

the free surface and velocity values from the previous

iteration. To implement the algorithm, an additional

grouping of the mixed space and time derivatives in

the dispersive terms is required. Wei et al.’s (1995)

paper gives a good description and justification of this

grouping procedure.
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Spatial differencing in the numerical model

employs centered finite differences. All first-order

spatial derivatives are differenced with fourth-order

(Dx4 =Dy4) accurate equations, which are five-point

differences. Second-order spatial derivatives are

approximated with three-point centered finite differ-

ence equations, which are second-order accurate. The

second-order spatial derivatives are taken to lower-

order accuracy because these derivatives only appear

in dispersive terms. The ‘‘combined’’ dispersive-

numerical error for the second-order derivatives is

O(Dx2l2), which is less than the error associated with

first-order spatial derivatives, O(Dx4), for all the grid

spacings and wavelengths modeled in this paper.

3. Moving boundary algorithm

The development of the moving boundary algo-

rithm presented in this paper began with a search for a

scheme that allows for the wet–dry boundary to exist

at any location, not restrictively at a node on a fixed

grid. One method of achieving this is through

dynamic regridding, using a Lagrangian approach.

Methods such as this have been used in finite differ-

ence and finite element nonlinear shallow water

(NLSW) and Boussinesq equation models (e.g.,

Petera and Nassehi, 1996; Zelt, 1991). Lagrangian

moving boundary techniques require numerical flex-

ibility, in terms of utilizing constantly changing space

and time steps, to be implemented in conjunction with

a Eulerian-type model. This flexibility is not present

in the current numerical scheme, and is difficult to

achieve due to the nature of the required high-order

derivatives, and so a different approach is developed

in this paper.

Owing to the significant number of derivatives

calculated by the numerical model (f 50 in 2D), it

would be advantageous if the moving boundary

scheme did not require any sort of special treatment

of the derivatives near the wet–dry boundary (i.e.,

forward, backward, or low-order finite differences).

To require, for example, directional differences at the

boundary leads to abundant conditional statements,

making the programming tedious and the runtime

longer. Therefore, the five-point centered finite differ-

ences that are employed in the numerical model are

desired to be used at all locations, including those

points near the shoreline, where neighboring nodes

may be dry. With this in mind, the moving boundary

scheme will employ a linear extrapolation of free

surface displacement, f, and velocity components, ua

and va, from the fluid domain, through the wet–dry

boundary, and into the dry region. Kowalik and Bang

(1987) presented a similar approach of employing a

linear extrapolation into the dry region, based on

Sielecki and Wurtele’s (1970) earlier developments.

Their model uses a leapfrog scheme to approximate

the NLSW equations, and is limited to one-dimen-

sional, nonbreaking problems. This paper will attempt

to extend this idea to two horizontal dimension-

breaking problems, using a high-order numerical

model.

An extrapolation through the wet–dry boundary

permits this boundary to exist in-between nodal

points. Fig. 1 gives a numerical example of how the

extrapolation is performed in a one-dimensional prob-

lem, showing a solitary wave interacting with a 1:20

slope. The free surface locations that are determined

using the governing Eqs. (1)–(3) are shown by the

solid line, whereas the linearly extrapolated points are

shown by the dots. With extrapolated values of f and

velocity components in the dry region, solving the

model equations at wet nodes can proceed. When

solving the model equations, five-point centered dif-

ferences are employed to approximate the spatial

derivatives. Although no derivatives are calculated

at dry (extrapolated) points, the physical values of

free surface and velocity at these points are used to

evaluate derivatives at neighboring wet points. The

determination of the location of the wet–dry boun-

dary is performed once per time step, immediately

after the predictor step. The moving boundary techni-

que is numerically stable, and does not require any

additional dissipative mechanisms.

The first step in the extrapolation boundary method

is to determine a nodal boundary dividing an area

where the model equations are to be solved (i.e., the

wet region) and an area to be extrapolated (i.e., the dry

region). The criteria employed to determine this

dividing point is dependant on the total water depth,

H, where H = h + f. If H > d, where d is some

threshold, the model equations will be applied at the

node; otherwise, the physical variables at the node

will be extrapolated from a neighboring node. The

value of d should be small; a value of a0/50, where a0
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is the incident wave amplitude, was used for all

simulations presented in this paper. This value is

chosen based on stability. It was found that decreasing

this value could occasionally cause stability problems,

especially for simulations with strong wave breaking

or ones that include bottom friction. The instability

problems associated with these two parameterizations

are due to the fact that they are inversely proportional

to the total water depth. A very small total water depth

may create an equally large dissipative momentum

flux, which can lead to an overflow in the iterative

numerical scheme. However, for nonbreaking simu-

lations without bottom friction, a d value of a0/5000

could be stably employed. A convergence check, by

changing d, will be discussed briefly in the next

section.

For the simple one-dimensional problem shown in

Fig. 1, the extrapolation procedure is straightforward.

Using the two wet points (where H>d) nearest to the

wet–dry boundary, a linear extrapolation into the dry

(where H < d) region is performed. For the two-

dimensional case, the procedure is slightly more

complex, but the logic is identical. The 2D extrap-

olation is performed by checking the surrounding

eight points of a dry node. For each surrounding node

that is wet, a 1D linear extrapolation is used to

estimate the free surface at the dry node. Since more

than one surrounding node can be wet, the free surface

value at the dry node is taken to be the average of the

1D extrapolations. This procedure is simply repeated

for the second layer of dry nodes, extrapolating from

the just-extrapolated first layer of dry nodes. For both

Fig. 1. Runup and rundown of a solitary wave, where extrapolated nodes are shown by the dots.
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1D and 2D cases, a four-point filter is passed over the

extrapolated region, smoothing f, ua, and va, and

eliminating possible slope discontinuities in the

extrapolation. Additionally, there is one possible

arrangement of wet and dry nodes that cannot be

allowed to exist. When a wet node is grouped with dry

nodes on both sides, i.e., if node i is wet and both i� 1

and i+ 1 are dry, the extrapolation is impossible for

both dry nodes. When this situation is developed, the

wet node is no longer considered to be in the fluid

domain, and its value will be extrapolated.

As the shoreline moves up and down the slope, the

number of wet and dry points changes. For example,

at time n� 1, node i� 1 is wet and node i is dry, and

its free surface value has been extrapolated. Now, at

time n, the new extrapolation for node i yields a total

water depth greater than d. Node i is therefore now a

wet node, and its value is no longer extrapolated, but

calculated by Eqs. (1)–(3).

As the extrapolated, dry points are solely a func-

tion of the neighboring wet points, the finite differ-

ences that incorporate these dry points cannot truly be

thought of as centered finite differences. Let us con-

sider a one horizontal dimension problem, and focus

on six grid points, numbered from i=� 3 to i = 2. At

the time that we take a snapshot, the shoreline exists

somewhere between points i= 0 and i = 1. Points to

the left of this point are wet (i =� 3, � 2, � 1,0), and

points to the right are dry (i= 1, 2). At the wet points,

the governing equations, using the predictor–correc-

tor scheme, are solved. At the dry points, the free

surface and velocity are linearly extrapolated, and can

be given as:

P1 ¼ 2P0 � P�1 ð10Þ

P2 ¼ 3P0 � 2P�1 ð11Þ

where P represents both f and ua, and the subscripts

represent the i-index. Substituting the extrapolated

values of points i= 1 and i= 2 into the fourth-order

first derivative difference equation:

DP0

Dx
¼ P�2 � 8P�1 þ 8P1 � P2

12Dx
ð12Þ

yields, after some manipulation:

DP0

Dx
¼ 1

6

DP0

Dx

� �
2B

þ 5

6

DP0

Dx

� �
1B

ð13Þ

where 2B stands for the second-order backward (or

upwind) finite difference:

DP0

Dx

� �
2B

¼ P�2 � 4P�1 þ 3P0

2Dx
ð14Þ

and 1B stands for the first-order backward (or upwind)

finite difference:

DP0

Dx

� �
1B

¼ �P�1 þ P0

Dx
ð15Þ

Using the same approach, the derivative at i =� 1 can

be rewritten as:

DP�1

Dx
¼ 1

2

DP0

Dx

� �
3T

þ 1

3

DP0

Dx

� �
2C

þ 1

6

DP0

Dx

� �
1B

ð16Þ

where 3T stands for the third-order tilted (in the

backward direction) finite difference:

DP�1

Dx

� �
3T

¼ P�3 � 6P�2 þ 3P�1 þ 2P0

6Dx
ð17Þ

and 2C stands for the second-order centered finite

difference:

DP�1

Dx

� �
2C

¼ �P�2 þ P0

2Dx
ð18Þ

So clearly, hidden within the linear extrapolation, is

leading order dissipation associated with the upwind

differencing, even though a fourth-order centered

difference is being taken. Note that the extrapolations

are done for both free surface and velocity, so the

moving boundary scheme will dissipate both momen-

tum and mass.

The same analysis can be done for the second-

order in space derivatives. At the point i = 0, the

curvature is given as

D2P0

Dx2
¼ P�1 � 2P0 þ P1

Dx2
ð19Þ

which is, with the linear extrapolation of P1, exactly

zero at this point. Therefore, at the first wet point, all

second-order differences disappear, and the governing

Eqs. (1)–(3) reduce to the nonlinear shallow water

wave equations. Now, looking at the whole picture of

first- and second-order spatial derivatives, we see that

numerical dissipation is not as great as it might
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appear. It was shown that the first spatial derivative at

the first wet point, DP0/Dx, is in large part approxi-

mated by the first-order upwind finite difference,

[DP0/Dx]1B. The leading numerical truncation error

of the upwind difference is (Dx/2)(D2P0/Dx
2), which is

the source of the numerical dissipation in upwind

schemes. However, at this first wet point, the second

spatial derivative, D2P0/Dx
2, is forced to zero in the

numerical model. The leading numerical truncation

error of the second spatial derivative taken with a

second-order centered difference formula is (Dx2/

12)(D4P0/Dx
4). Therefore, the leading order, dissipa-

tive truncation error of the upwind difference at the

first wet point is actually (Dx/2)(Dx2/12)(D4P0/Dx
4).

At the second wet point, the first spatial derivative,

DP � 1/Dx, also incorporates upwind differencing

(although its importance is five times less here as

compared to the first wet point). As the second spatial

derivative at this point is non-zero, there will at this

point occur dissipation proportional to the second

spatial derivative, equal to (Dx/10)(D2P� 1/Dx
2).

It is worth noting that these issues with leading order

numerical dissipation associated with the linear extrap-

olation could be avoided by utilizing a higher-poly-

nomial extrapolation. Unfortunately, these higher-

order extrapolations created stability problems with

breaking and near-breaking wave runup. As these

waves approach the beach, typically the curvature of

the free surface is large very near the shoreline. The

large curvature created rapidly varying extrapolated

values, which then led to numerical roundoff problems.

It would seem to be unnecessary to perform the

linear extrapolation in the numerical model, as one

could simply code a couple conditional statements,

where if the current calculation node in the model is

near the wet–dry boundary, use upwind differencing,

instead of centered differencing. This too was attemp-

ted, but always resulted in 2Dx waves. It was found,

through trial and error, that stability comes from the

prediction of velocity in the dry region. In this

numerical scheme:

ðuaÞnþ1 ¼ f ½ðuaÞnþ1
,ðuaÞn,ðuaÞn�1

,ðuaÞn�2� ð20Þ

as well as a function of numerous other parameters.

Let us say that at time n, the point i was dry. Now, at

time n + 1, the point i is wet. What are the previous

values of velocity, at times n� 2, n� 1, and n, to use

in the predictor–corrector scheme? An answer of zero

velocity would be most obvious, because physically,

there was no fluid. Using a zero velocity at these times

in the numerical model led to 2Dx waves. So for this

type of model, a zero velocity at previous times does

not work. Using the linearly extrapolated velocities at

the previous times of n� 2, n� 1, and n works well. It

could be argued that the velocities at the previous

‘‘dry’’ times should not be zero, in fact they should

not be anything—they are undefined. Thus, this

model is simply taking a reasonable guess at what

the undefined velocity should be in order to yield a

stable and accurate numerical model. The linear

spatial extrapolation is not just important as a spatial

extrapolation (which is equivalent to some combina-

tion of upwind differencing)—it is especially impor-

tant as a temporal extrapolation.

As a primary check of the algorithm, its ability to

conserve mass is analyzed. Mass is defined as the

integral of the free surface elevation, not the integral

of the total water depth. A range of solitary waves,

from 0.01 < e< 0.4 propagating up one-dimensional

slopes of 1:10, 1:20, and 1:50 were checked for

conservation of mass. Note that when referencing

solitary waves, e =H/h, where H is the solitary wave

height. The solitary wave is generated using the

analytic formulas presented in Wei and Kirby

(1995), which are derived from the weakly nonlinear,

‘‘extended’’ Boussinesq equations. Fig. 2 summarizes

the conservation properties of these cases. Shown in

this figure is the fractional change in mass of the

soliton, after completely exiting the nearshore region.

Thus, these fractions represent the change in mass,

scaled by the initial mass, after interaction with the

shoreline is over. There are two clear trends: (1) for a

given slope, the error in conservation is larger with

larger wave heights and (2) for a given wave height,

the error is larger with milder slopes. Both of these

trends are consistent with the expectation that the

numerical error is larger when the curvature near the

shoreline is larger.

A question that arises with examination of Fig. 2 is

whether the small conservation errors will accumulate

during a regular wave simulation, destroying the

simulation accuracy. A test case with a sine-wave

shoaling up a 1/10 slope was simulated, and is

summarized in Fig. 3. The incident wave has a wave

height/water depth = 0.1 and a wavelength/water
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Fig. 3. Mass conservation check for a breaking period wave. The top subplot shows a spatial snapshot of the free surface, roughly 80 wave

periods into the simulation, where the locations of breaking are given by the steps in the line plotted on z/h0 = 0.15. The bottom plot gives the

total mass fluctuation in the numerical domain as a function of time.

Fig. 2. Fractional change in mass for breaking and nonbreaking solitary waves interacting with three different planar slopes. Simulations where

breaking occurs are indicated by the 	 ’s, nonbreaking results by the o’s.
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depth = 10, and breaks strongly while approaching the

shoreline. The top plot of Fig. 3 is a snapshot of the

free surface and also indicates the breaking locations.

Note that a sponge layer is used as the left boundary.

The bottom plot of the same figure shows the oscil-

lation of mass in the entire numerical domain through

80 wave periods of time. The oscillation is due to the

constant addition/subtraction of mass by the internal

source wave generator. Clearly, no accumulation of

errors occurs, as the oscillation remains regular for a

large number of periods. In regard to this periodic,

breaking simulation, numerical filtering was required

for long-term stability. Each time a wave breaking

event initiated, a small amount of noise was generated

immediately behind the breaker. Eventually, this noise

accumulated and caused the simulation to become

unstable. This statement is not restricted to simula-

tions that contain a shoreline, any simulation with

periodic wave breaking suffers from this difficulty.

For the setup used in Fig. 3, the simulation would

overflow after 15 wave periods. To eliminate this

noise and the associated instability, a nine-point filter

(see Kirby et al., 1998) was passed over the domain,

filtering both the free surface and velocity, once every

two wave periods. The use of the filter has very little

effect on conservation, but gives a huge boost to

numerical stability, allowing the simulation to run

indefinitely. Filtering is only needed for periodic,

breaking waves, and thus for all simulation results

presented in this paper, except of course for those

given in Fig. 3, no filtering is used.

4. Validation in one horizontal dimension

4.1. Sine wave runup

As a first check of the moving boundary model, a

monochromatic wave train is let to runup and run-

down a plane beach. This situation has an analytic

solution derived by Carrier and Greenspan (1958).

Their derivation makes use of the NLSW equations,

Fig. 4. Sine wave runup on a planar beach. (a) Numerical free surface at various times, analytic free surface is shown by the dashed line (– – ),

and is only compared for the maximum and minimum shoreline movement profiles. (b) Comparison between analytical ( – – ) and numerical

( – ) shoreline movement.
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and thus for consistency the dispersive (l2) terms will

be ignored in the numerical simulations for this

comparison. The wave and slope parameters for this

test case are identical to those used by Madsen et al.

(1997) and Kennedy et al. (2000). A wave train with

height 0.006 m and period of 10 s travels in a one-

dimensional channel with a depth of 0.5 m and a slope

of 1:25. For the numerical simulation, a grid size of

0.045 m and a time step 0.01 s are used; bottom

friction is not included and the wave does not break. It

should be noted that the grid size is an order of

magnitude smaller than what is required for a con-

vergent solution. This small grid size is used only to

make certain that the boundary location travels a

significant number of grid points (>10) during runup

and rundown.

The results of the numerical simulation are shown

in Fig. 4. Fig. 4a shows the numerical free surface at

various times, along with two profiles of the analytic

free surface. The comparison between analytic and

numerical horizontal shoreline movement is shown as

Fig. 4b. The agreement is good. Also, as a check on

the convergence properties of d, an additional simu-

lation with d = a0/5000 was run. A comparison

between the y = ao/50 shows little difference, and is

not given in this paper. The maximum deviation in

shoreline at any time between the two d runs is on the

order of 0.01% of the maximum excursion.

4.2. Nonbreaking and breaking solitary wave runup

Solitary wave runup and rundown was investigated

experimentally by Synolakis (1986, 1987). In his

work, dozens of experimental trials were performed,

encompassing two orders of magnitude of solitary

wave height. The beach slope was kept constant at

1:19.85. Many researchers have used this data set to

validate numerical models (e.g., Zelt, 1991; Lin et al.,

1999). To compare with this data, solitary waves with

heights in the range of 0.005 < e < 0.5 are made to

Fig. 5. Nondimensional maximum runup of solitary waves on a 1:09.85 beach versus nondimensional wave height. The points experimental

data taken from Synolakis (1986), the dotted line is the numerical result with no bottom friction, the solid line is the numerical result with a

bottom friction coefficient, f, of 10� 3, and the dashed line with f = 10� 2.
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runup and rundown a slope and the maximum vertical

runup is calculated. Note that this range includes both

nonbreaking and breaking waves. For all simulations,

Dx/h = 0.3 and Dt
ffiffiffiffiffiffiffiffi
g=h

p
¼ 0:03 . As a test of the

sensitively of wave runup to bottom friction, three

sets of simulations were undertaken with different

bottom friction coefficients, f. Set 1 was run with no

bottom friction, Set 2 with f= 10� 3, and Set 3 with

f= 10� 2.

The numerical results are compared with the

experimental data in Fig. 5, where maximum vertical

runup is scaled by the water depth. For the smallest

solitary waves (e < 0.01) bottom friction does not

affect the runup, as maximum runup is identical for

Fig. 6. Breaking solitary wave runup and rundown on a planar beach at t( g/h)1/2=(a) 15, (b) 20, (c) 25, (d) 45. The solid line represents the

numerical results and the points represent the experimental data. In (c), the dashed line represents numerical results by Lin et al. (1999) (closest

to experiment and numerical results presented in this paper), the dotted line represents results by Zelt (1991), and the dashed–dotted line results

by Titov and Synolakis (1995).
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all three numerical sets. This is consistent with pre-

vious research (e.g., Liu et al., 1995), where it is

shown that bottom friction effects are minor for non-

breaking waves, and will typically alter the runup by

< 0.5% of the maximum. For larger wave heights,

breaking is initiated, both experimentally and numeri-

cally, near e = 0.04. It is at this point that the numerical

runup for Set 1 and Set 2 begins to diverge. Note that

due to the log–log scale used in Fig. 5, the deviation

in maximum runup may not be apparent. As an

example, for e = 0.3, scaled runup with no bottom

friction is 1.21, with f = 10� 3 runup is 0.73, and with

f= 10� 2 is 0.45, which are significantly different. Use

of f= 5	 10� 3 yields the best agreement with exper-

imental data for this particular case.

It would seem that inclusion of an accurate bottom

friction parameterization becomes increasingly impor-

tant with increasing degree of wave breaking. The

probable reason is that as a broken wave runs up a

mild slope, it travels up the slope as a fairly thin layer

of water. As can be seen from Eq. (5), the smaller the

total water depth, the more important bottom friction

becomes.

Synolakis (1986) also photographed the waves

during runup and rundown. One set of these snap-

shots, for e = 0.28, was digitized and compared with

the numerical prediction, shown in Fig. 6. The

numerical simulation shown in this figure uses

f = 10� 3. The wave begins to break between Fig.

6c and b, and the runup/rundown process is shown

in Fig. 6c–d. In Fig 6c, numerical snapshots from

three other models are plotted. The comparisons

indicate a significant improvement over weakly

nonlinear Boussinesq equation results of Zelt

(1991) and the NLSW results of Titov and Syno-

lakis (1995). Additionally, the numerical results

presented in this paper compare favorably to the

two dimensional (vertical plane) results of Lin et al.

(1999), which makes use of a complex turbulence

model.

5. Validation in two horizontal dimensions

5.1. Long wave resonance in a parabolic basin

Analytic solutions exist for few nonlinear, two

horizontal dimension problems. One such solution is

that for a long wave resonating in a circular parabolic

basin. Thacker (1981) presented a solution to the

Fig. 7. Initial free surface and depth profile for parabolic basin test.
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NLSW equations, where the initial free surface dis-

placement is given as:

fðr, t ¼ 0Þ

¼ h0
ð1� A2Þ1=2

1� A
� 1� r2

a2
1� A2

ð1� A2Þ2
� 1

( )" #

ð21Þ
and the basin shape is given by:

hðrÞ ¼ h0 1� r2

a2

� �
ð22Þ

where

A ¼ a4 � r40
a4 þ r40

, ð23Þ

h0 is the center point water depth, r is the distance

from the center point, a is the distance from the center

point to the zero elevation on the shoreline, and r0 is

the distance from the center point to the point where

the total water depth is initially zero. The numerical

values used for this test are: h0 = 1.0 m, r0 = 2000 m,

and a = 2500 m. The centerline initial condition and

depth profile is shown in Fig. 7. Thacker showed the

solution to this problem to be:

fðr, tÞ ¼ h0
ð1� A2Þ1=2

1� Acoswt
� 1

"

� r2

a2
1� A

ð1� AcoswtÞ2
� 1

( )#
ð24Þ

Fig. 8. Centerline free surface profiles for numerical ( – – ) and analytical (: : :) bowl oscillation solutions at t=(a) 5T, (b) 5 1/6T, (c) 5 1/3T, (d) 5

1/2T, where T is the oscillation period.
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where

w ¼ 1

a
ð8gh0Þ1=2 ð25Þ

and g is gravity. Cho (1995) also used this solution as

a test for his NLSW moving boundary model. Cho’s

model, an explicit leap-frog finite-difference scheme

which includes numerical frequency dispersion, repro-

duced the analytical solution very well for roughly

one-half of an oscillation, but began to deviate soon

after. A simulation using the extrapolation boundary

technique presented in this paper was undertaken,

truncating the dispersive terms in Eqs. (2) and (3) to

be consistent with the NLSW solution, and using

Dx = 28 m and Dt = 0.9 s. Bottom friction is not

included and the wave does not break. The compar-

ison between the numerical and analytic results is

shown in Fig. 8. The numerical free surfaces shown in

Fig. 8a–d are from the fifth oscillation, and show

excellent agreement with the analytic solution. Addi-

tionally, a test using the full equations (Eqs. (2) and

(3)), with dispersive terms, was performed. Interest-

ingly, the wave field in this situation becomes chaotic

after the first oscillation, and shows a similar pattern

of divergence from the analytical solution as Cho’s

results. Therefore, this parabolic basin comparison

would appear to be an ideal test for NLSW models,

as the effects of numerical dispersion or dissipation

become evident rapidly.

5.2. Runup on a conical island

Briggs et al. (1994) presented a set of experimental

data for solitary wave interaction around a conical

island. The slope of the island is 1:4 and the water

depth is 0.32 m. Three cases were simulated, corre-

sponding to solitary wave heights of 0.013 m

(e = 0.04), 0.028 m (e = 0.09), and 0.058 m

(e= 0.18). In addition to recording free surface ele-

vation at a half dozen locations, maximum wave

runup around the entire island was measured. This

data set has been used by several researchers to

validate numerical runup models (e.g., Liu et al.,

1995; Titov and Synolakis, 1998; Chen et al., 2000).

In this paper, free surface elevation is compared at the

locations shown in Fig. 9. Gages #6 and #9 are

located near the front face of the island, with #9

situated very near the initial shoreline position. Gages

#16 and #22 are also located at the initial shoreline,

where #16 is on the side of the island and #22 on the

back face.

Simulations were performed using Dx = 0.15 m and

Dt = 0.02 s; bottom friction is neglected for these

numerical tests. A soliton is placed in the numerical

domain, as an initial condition. Numerical–experi-

mental time series comparisons are shown in Fig. 10.

Fig. 10a–d is for Case A (e= 0.04), Fig. 10e–h is for

Case B (e= 0.09), and Fig. 10i– l is for Case C

(e = 0.18). The gage number is shown in the upper

left of each subplot. For all comparisons, the lead

wave height and shape is predicted very well with the

current model. Also, for all comparisons, the secon-

dary depression wave is not predicted well. The

numerical results show less of a depression following

the main wave than in the experiments. This deviation

is consistent with other runup model tests (e.g., Liu et

al., 1995; Chen et al., 2000). The agreement of Case C

is especially notable, as the soliton breaks along the

backside of the island as the trapped waves intersect.

This breaking occurs both experimentally, as dis-

cussed in Liu et al. (1995), and numerically.

As mentioned, maximum runup was also exper-

imentally recorded. The vertical runup heights are

converted to horizontal runups, scaled by the initial

shoreline radius, and plotted in Fig. 11. The crosshairs

represents the experimental data, where Fig. 11a is for

Fig. 9. Conical island setup. The gage locations are shown by the

dots, and the wave approaches the island from the left.
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Case A, Fig. 11b is for Case B, and Fig. 11c is for

Case C. The numerical maximum inundation is also

plotted, given by the solid line. The agreement for all

cases is very good.

5.3. Soliton evolution in a trapezoidal channel

Peregrine (1969) presented laboratory experiments

wherein solitary waves propagated through a trape-

zoidal channel. To experimentally create the solitons,

a piston wavemaker was cut to fit the channel and

could slide horizontally along the trapezoidal channel.

In the numerical simulations, as it is difficult to

implement a piston wavemaker in a trapezoidal chan-

nel, the solutions of solitary waves in rectangular

channels are used as an initial condition everywhere

in the channel.

Once a solitary wave enters a trapezoidal channel,

it deforms. Eventually, in certain channels, the leading

wave will reach a quasi steady state, and the wave-

Fig. 10. Experimental ( – – ) and numerical ( – ) time series for solitary wave interaction with a conical island. (a–d) are for Case A, (e–h) are

for Case B, and (i – l) are for Case C. The gage number is shown in the upper left.
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form will not change in time. After reaching this quasi

steady state, numerical results of the lead wave height

are compared with Peregrine’s experimental results.

The comparisons are shown in Fig. 12. For this

comparison, a trapezoidal half-channel (one vertical

wall and one sloping side wall) with constant depth

width of 1.5h0, where h0 is the depth at the non-

sloping part the channel, and a side-wall slope of 1:1

is employed. Three different amplitude solitary waves

(a = 0.08h0, a = 0.12h0, and a = 0.18h0) are simulated

and compared with experimental results. The numer-

ical results show reasonably good agreement with

laboratory data, although there is a clear trend of

under prediction of wave height near the shoreline.

An interesting property of wave evolution in cer-

tain trapezoidal channels is the successive regenera-

Fig. 11. Maximum horizontal runup, scaled by the initial shoreline radius, for Case A (a), Case B (b), and Case C (c). Experimental values are

shown by the stars and the numerical results are shown by the solid line.

Fig. 12. The transverse profile of a solitary wave in a trapezoidal channel. The continuous line shows the numerical result; the crosses indicate

the measured profile digitized from Peregrine’s (1969) paper.
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tion of the wave front. When the channel is wide

enough, with respect to the wavelength, and the side-

wall slope is gradual enough, the wave energy that is

reflected off the side walls does not resituate in the

original wave. This occurs in the Peregrine (1969)

experiments discussed above, but forms a distinct

wave behind the original wave front. Wave energy

is continually transferred from the original wave front

into the new wave behind, until the original wave

front virtually disappears. The new front has a smaller

height, and a slightly longer wavelength than the

original.

One example of the phenomenon is discussed in

this section. A half channel is created (one vertical

wall at y = 0, one sloping side wall), with a constant

water depth width of 9h0 and a length of 250h0, where

h0 is the constant water depth along the center of the

channel. The side wall is sloped at 1:5. A solitary

wave, with wave height 0.1h0 is placed in the channel

as an initial condition. The wave does not break, and

bottom friction is not included. For this simulation,

Dx/h0 = 0.14 and Dt
ffiffiffiffiffiffiffiffiffiffi
g=h0

p
¼ 0:05 are used.

Fig. 13 shows four snapshots, in plan view, of the

wave propagating through the part of channel. The

dashed line plotted across the channel is the x� ct = 0

line, where c is the linear long wave speed,
ffiffiffiffiffiffiffi
gh0

p
.

Seafloor elevation contours are also shown on each

plot. Fig. 13a shows the wave soon after the simu-

lation has begun, and the front is beginning to arc, due

to slower movement in the shallower water. By the

time shown in Fig. 13b, wave energy has reflected off

the slope, and has formed a second, trailing, wave

crest behind the original wave. As this slope-reflected

wave crest interacts with the vertical wall (or center-

Fig. 13. Evolution of a solitary wave in a trapezoidal channel (half channel shown), at t( g/h)1/2=(a) 7.5, (b) 35, (c) 65, (d) 93. Seafloor elevation

contours are shown at increments of 0.5h0, by the solid lines. The line of x� ct= 0 is shown by the dashed line.
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line of channel), a Mach stem forms at the vertical

wall, and virtually no wave energy is reflected off the

vertical wall. Also at this time, an oscillatory train,

trailing the leading wave, forms along the slope. At

time = 65, shown in Fig. 13c, most of the wave energy

has transferred from the original wave front, to the

secondary crest. In the last plot, Fig. 13d, the process

has started to repeat itself, evidenced by the lobe

growing behind the second front, near a depth of 0.9.

This process can be examined from a different

perspective with Fig. 14. This figure shows numerous

time series, taken along the centerline of the channel

( y = 0). Also shown are three characteristic lines.

Following the first characteristic, we can see that the

lead wave as nearly disappeared by x = 140h0,

whereas the secondary wave is clearly defined by this

point. The process repeats; at x = 230h0, the secondary

wave is vanishing, and a third wave front is beginning

to take shape. The phenomenon shown in Figs. 13 and

14 is an interesting one, although not wholly unex-

pected, and is a demonstration of the interaction

between nonlinearity and refraction.

6. Conclusion

A moving boundary algorithm is developed for use

with depth integrated equations. Used here in con-

junction with a fixed grid finite difference model, the

moving boundary algorithm could also be employed

by a finite element scheme. Founded around the

restrictions of the high-order numerical wave propa-

gation model, the moving boundary scheme employs

linear extrapolation of free surface and velocity

through the wet–dry boundary, into the dry region.

The linear extrapolation is simple to implement and

can be straightforwardly incorporated into a numerical

model. The technique is numerically stable, does not

require any sort of additional dissipative mechanisms

or filtering, and conserves mass.

The moving boundary is tested for accuracy using

one- and two-dimensional analytical solutions and

experimental data sets. Nonbreaking and breaking

solitary wave runup is accurately predicted, yielding

a validation of both the eddy viscosity breaking

parameterization and the runup model. For strongly

Fig. 14. Time series along the centerline of the channel ( y= 0); location of each time series is note along the right border of the figure.

Characteristics are shown by the dashed–dotted lines.
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breaking waves, the proper numerical estimation of

bottom friction is shown to be important. Two-dimen-

sional wave runup in a parabolic basin and around a

conical island is investigated, and comparisons with

published data show excellent agreement. Also, soli-

tary wave evolution in a trapezoidal channel is simu-

lated, and an interesting phenomenon is examined.
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