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SOLITARY WAVE INTERACTION WITH POROUS BREAKWATERS

By Patrick J. Lynett,1 Associate Member, ASCE, Philip L.-F. Liu,2 Fellow, ASCE,
Inigo J. Losada,3 Associate Member, ASCE, and Cesar Vidal4

ABSTRACT: This paper presents a numerical model for long-wave interaction with vertically walled porous
structures. Based on depth-integrated equations of motion, the model is suitable for weakly nonlinear, weakly
dispersive transient waves propagating in both variable-depth open water and porous regions. Comparisons with
experimental data for problems with one horizontal dimension show that a single choice of empirical parameters
for hydraulic conductivity gives accurate numerical predictions for various sizes of rocks used in the construction
of porous breakwaters. A rigorous experimental comparison of a porous breakwater gap shows that the numerical
model is excellent in predicting the waveform and phase of the transformed wave. In this paper attention is
focused on the reflection, transmission, and diffraction of solitary waves by a porous breakwater.
INTRODUCTION

The interaction of nonlinear, shallow water waves with po-
rous breakwaters is an important subject in coastal planning
and design. Many researchers have studied reflection and
transmission characteristics of porous rubble-mound break-
waters, but few have examined the diffraction associated with
detached porous breakwaters. In most existing works, the in-
cident waves are assumed to be linear and periodic. Sollitt and
Cross (1972) and Madsen (1974) introduced linear wave mod-
els in which inertia and resistance forces due to a rectangular
porous structure were included. Various additions and exten-
sions have been made to these models (Madsen and White
1975; Sulisz 1985). More recently, complex numerical models
have given researchers the ability to accurately model virtually
any type of coastal setup (van Gent 1995; Liu et al. 1999).
These models include only one horizontal dimension and
therefore cannot currently be extended to diffraction analysis.

Diffraction of waves by a solid breakwater has received a
considerable amount of attention. The earliest work is the ad-
aptation of light diffraction to water waves (Penny and Price
1952), which is still used as a benchmark comparison for re-
search [e.g., Yu and Togashi (1996)] and can be found in most
design manuals [e.g., Coastal Engineering Research Center
(CERC) (1984)]. Additional analytical diffraction theories
have since been developed (Goda et al. 1978; Liu 1984; Dal-
rymple and Martin 1990), but all require linear waves and
constant water depth. Numerical work by Wang (1993) ex-
tended solid breakwater diffraction to weakly nonlinear long
waves, using Wu’s generalized Boussinesq model (Wu 1981).
This model was applied to arbitrarily incident waves interact-
ing with a thin breakwater in a constant depth region but could
be altered to use a variable-width breakwater in varying water
depth. Wang (1993) compared his numerical solution to Liu’s
linear model and experimental data (Liu 1984), showing that
the weakly nonlinear model better predicted the arrival time
of the diffracting wave, although both models predicted wave
height well.

Diffraction of waves by a porous breakwater, however, has
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received very little attention. Yu (1995) developed a porous
breakwater diffraction model based on the linear potential
wave theory. This model was extended to waves of arbitrary
incidence (Yu and Togashi 1996; McIver 1999) but requires
that the breakwater be thin compared to the incident wave
length. Additionally, there are no rigorous experimental studies
of porous breakwater diffraction.

This paper presents a numerical model describing the inter-
action of a weakly nonlinear and weakly dispersive wave train
with a porous breakwater as it propagates over variable water
depth. The model consists of two components. In the open
water region, the model employs the generalized Boussinesq
equations presented originally by Wu (1981). Inside the porous
breakwater, the model is based on the Boussinesq-type equa-
tions derived by Liu and Wen (1997). A high-order predictor-
corrector finite-difference scheme is developed to couple two
sets of governing equations. Because drag coefficients in the
porous media flow need to be determined, laboratory experi-
ments for both 1D solitary wave reflection and transmission
and 2D solitary wave diffraction are performed. Very good
agreement between the experimental data and numerical re-
sults is obtained. This paper focuses on solitary wave diffrac-
tion, primarily due to the experimental difficulty in studying
periodic wave diffraction. However, with this rigorous soliton
diffraction validation and a future validation of 1D breakwater
interaction with periodic waves, the model would be proven
accurate for periodic wave diffraction as well.

THEORY

In the open-water region, the generalized Boussinesq two-
equation model (Wu 1981) is used to describe wave motion.
This model has shown to be both stable and accurate in the
numerical prediction of solitary and cnoidal wave transfor-
mation in the horizontal plane (Wang 1993; Jiang et al. 1996).
The equations are in terms of the free-surface displacement z
and depth-averaged velocity potential f and include weakly
nonlinear and weakly dispersive effects. They are given, in
dimensional form

­z
1 =? [(z 1 h)=f] = 0 (1)

­t

2­f 1 h ­ h ­2 21 (=f) 1 gz 2 =? (h=f) 1 = f = 0 (2)
­t 2 2 ­t 6 ­t

where h = local water depth; g = gravity; and = = (­/­x,
­/­y), the horizontal gradient. Depth-averaged velocity u can
be directly calculated with the knowledge of f

u = =f (3)

Note that the above equations can accommodate changing
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water depth, h(x, y), and are valid only for weakly nonlinear
and dispersive waves, i.e.

2
a h

O = O << 1 (4)S D FS D Gh l

where a represents the wave amplitude; and l represents the
characteristic horizontal length scale of the wave motion.

In the porous region, a set of Boussinesq-type equations is
employed. Liu and Wen (1997) derived a set of equations de-
scribing long-wave propagation in a porous medium, given in
a fully nonlinear form, evaluated on a prescribed horizontal
surface. To be consistent with the generalized Boussinesq
model for the free surface, Liu and Wen’s equations are trun-
cated to include only weakly nonlinear effects and then are
averaged over the entire water depth. Denoting c as the depth-
averaged piezometric head, K as the hydraulic conductivity, ne

as the effective porosity of the porous material, and h as the
local water depth, the governing equations for z and c can be
expressed

2­z K h ­ 22 =? [(z 1 h)=z] 2 = z = 0 (5)
­t n 3 ­te

2h 2c = z 2 = z (6)
3

Depth-averaged velocity is given

u = 2K=c (7)

In the porous region, the wave characteristics are subject to
the restriction indicated by (4). Although the original set of
porous flow equations given by Liu and Wen (1997) can ac-
commodate changing depth, in this analysis the reasonable as-
sumption of constant depth in the porous region is made, thus
simplifying the porous region equations. It would be straight-
forward to modify the governing equations so as to include
variable depth effects inside the porous region. Additionally,
it is required that the porous medium be homogeneous and
isotropic; therefore, K must be constant in space.

NUMERICAL MODEL

In this paper, a finite-difference model is presented that cou-
ples the Boussinesq equations for water waves with those for
free-surface flows within a porous medium. The model struc-
ture is similar to that of Wei and Kirby (1995). A high-order
predictor-corrector scheme is utilized employing a third-order-
in-time explicit Adams-Bashforth predictor step and a fourth-
order-in-time Adams-Moulton implicit corrector step (Press et
al. 1989). The implicit corrector step must be iterated until a
convergence criterion is satisfied. All spatial derivatives are
differenced to fourth-order accuracy, yielding a model that is
numerically accurate to Dx4, fy4 in space, and Dt4 in time.

In the porous region, a set of predictor-corrector equations
is required to determine z, and c is then calculated directly
from (6). A grouping of the time derivatives in (5) is done to
simplify the predictor-corrector equations. The grouping is
given

2h
Z = z 2 (z 1 z ) (8)xx yy3

where subscripts denote partial derivatives. Note that c = Z,
so no additional calculation is needed to determine c. The
predictor equation used to find z in the porous region becomes

Dtn11 n n n21 n22Z = Z 2 (23P 2 16P 1 5P ) (9)i, j i, j i, j i, j i, j12

where
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K
P = 2 [{(z 1 h)z } 1 {(z 1 h)z } ] (10)x x y y

ne

All terms are evaluated at the local grid point (i, j), and n
represents the current time step when values of z, f, and c
are known. The fourth-order implicit corrector expression for
z in the porous region is

Dtn11 n n11 n n21 n22Z = Z 2 (9P 1 19P 2 5P 1 P ) (11)i, j i, j i, j i, j i, j i, j24

In the open-water region, predictor-corrector equations for
both z and f are required. The time derivatives in (2) are
grouped in a manner similar to the grouping given in (8), i.e.

2h h
Q = f 2 (f 1 f ) 2 (h f 1 h f ) (12)xx yy x x y y3 2

The predictor equations have the same basic form as those
for the porous region

Dtn11 n n n21 n22z = z 2 (23E 2 16E 1 5E ) (13)i, j i, j i, j i, j i, j12

Dtn11 n n n21 n22Q = Q 2 (23F 2 16F 1 5F ) (14)i, j i, j i, j i, j i, j12

where

E = [(z 1 h)f ] 1 [(z 1 h)f ] (15)x x y y

1 2 2F = [(f ) 1 (f ) ] 1 gz (16)x y2

The corrector equations are

Dtn11 n n11 n n21 n22z = z 2 (9E 1 19E 2 5E 1 E ) (17)i, j i, j i, j i, j i, j i, j24

Dtn11 n n11 n n21 n22Q = Q 2 (9F 1 19F 2 5F 1 F ) (18)i, j i, j i, j i, j i, j i, j24

The system is solved by first evaluating the predictor equa-
tions, then solving for z in the porous region and f from (8)
and (12). For the 2D problem, neither (8) nor (12) yields a
diagonal matrix after finite differencing and an iterative Gauss-
Seidel method is used to solve the matrix system. If a 1D
problem is examined, however, the matrix is diagonal, with a
bandwidth of five (due to five-point finite differencing), and
an efficient LU decomposition can be utilized. At this point in
the numerical system, one has predictors for z, f, and c. Next,
the corrector expressions are evaluated, and z in the porous
region and f are calculated. The relative errors in each of the
physical variables is found to determine if the implicit correc-
tors need to be reiterated. This relative error is given

n11 n11w 2 w* (19)n11w

where w represents z, f, and c; and w* = previous iteration’s
value. The correctors are recalculated until all errors are <1024.
Note that inevitably there will be locations in the numerical
domain where values of the physical variables are close to zero
and applying the above error calculation to these points may
lead to unnecessary iterations in the corrector loop. Thus it is
required that uz/au, and uc/au > 1024 for the cor-uf/(h ga)u,Ï
responding error calculation to proceed.

The grid size is determined such that there are 30 grid points
per wavelength. However, it also was found that there should
be at least eight grid points inside the porous region in either
the x- or y-direction to make certain that the governing equa-
tions are actually applied at a sufficient number of locations.
For the Boussinesq equations, linear stability analysis shows
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that Dt < (Dx/2c), where c is the wave celerity. For the porous
equations, this relationship does not yield a stable numerical
model and Dt < (Dx/10c) gives stable results in all trials.

Along the interface between the open-water and porous
regions, it is necessary to match both free-surface displace-
ment and velocity. Additionally, it is required that the spatial
derivative of the free surface is continuous across the interface.
The interface boundary conditions are

zu = zu ; uu = uu (20)1 2 1 2

n ?=zu = n ?=zu (21)1 2

where the sign denotes opposite sides of the interface; and n
= unit normal vector. The numerical procedure for enforcing
this boundary condition is described now. The value of z on
the interface is directly calculated with (20) and (21), making
use of high-order forward and backward difference equations.
Along the interface, tangential second derivatives of z are eval-
uated using centered differences and normal second deriva-
tives of z are evaluated by directionally differencing into the
porous region. With this information, c on the interface can
be calculated using (8). Normal velocity on the interface is
evaluated according to both open water [(3)] and porous region
[(7)] equations, using forward and backward derivatives. From
(20) these velocities are set equal to one another, yielding an
equation with one unknown, c, on the interface, which can
now be directly calculated. At this point, all variables have a
value along the interface. To maintain the high accuracy of
the numerical scheme, all derivatives one grid point from the
interface in the normal direction must make use of modified
difference equations. Semicentered finite-difference equations
must be used, making certain that all terms in the finite dif-
ference are in the same region. Application of this interfacial
condition has produced accurate results for the 1D problem
(Liu and Wen 1997).

For the numerical exterior boundaries, two types of condi-
tions are applied: reflective and radiation. The reflective, or
no-flux, boundary condition for the Boussinesq equations has
been examined by previous researchers (Wang 1993; Wei and
Kirby 1995). This condition is given by

n ?=z = n ?=f = 0 (22)

along the solid boundary. In the porous region, the required
condition takes the similar form

n ?=z = n ?=c = 0 (23)

along the solid boundary. The radiation, or open, boundary
condition for the Boussinesq equations also have been previ-
ously studied (Jiang et al. 1996). This boundary condition al-
lows wave propagation out of the numerical domain and is
given

­W
6 c(n ?=W ) = 0 (24)

­t

along the open boundary, where W represents both z and f; c
= wave celerity; and the sign depends on the orientation of
the open boundary.

The hydraulic conductivity K of the porous breakwater is
given (Madsen 1974; Vidal et al. 1988; van Gent 1995)

1
K = (25)

aA 1 bU Bc

where
3(1 2 n ) n 1 2 ne e

A = ; B = (26)2 2 3gd n gdne e

in which a and b = empirically determined constants; d =
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characteristic diameter of the porous material; n = kinematic
viscosity of the pore fluid; and Uc = characteristic velocity
inside the porous breakwater. The aA term represents the ef-
fects of laminar resistance, and bUcB represents turbulent re-
sistance. The characteristic velocity is given (Liu and Wen
1997)

4 43 (u 2 u )d u
U = (27)c 3 34 (u 2 u )d u

where ud = normal velocity at the downstream face of the
breakwater; and uu = normal velocity at the upstream face of
the breakwater. Application of this formula for 1D solitary
wave transmission through porous structures has proven to be
accurate (Liu and Wen 1997). For the problem with two hor-
izontal dimensions, average normal velocities are found along
the upstream and downstream breakwater faces and (27) is
again used to find a characteristic velocity.

Uncertainty in evaluating hydraulic conductivity arises from
choosing the a and b values. Ideally, one would experimen-
tally determine these values for the specific porous material of
interest. This approach, however, eliminates one of the primary
benefits of numerical modeling—eliminating or reducing the
need to create physical models. Therefore, one would like to
be able to take previously determined values of a and b and
use them for this analysis. There have been numerous studies
that recommend a and b values (Madsen 1974; Vidal et al.
1988; van Gent 1995). The most thorough of these studies was
van Gent’s work, in which a range of a and b values was
experimentally determined, depending on which gravel length
scale was used, for a half-dozen different material types. The
results of his work indicated that a and b varied widely, de-
pending on what type of porous material was being examined.
He concluded, however, that for irregular gravel the average
values of a = 1,000 and b = 1.1 were sufficiently accurate to
be used over a range of gravel diameters. These values were
slightly different from the values of a = 1,100 and b = 0.81
recommended by Vidal et al. (1988) for gravel. A comparison
with 1D experimental results is performed to estimate the ef-
fect of changing these a and b values.

TRANSMISSION AND REFLECTION OF SOLITARY
WAVES

Previously, Liu and Wen (1997) created a 1D model using
a similar set of model equations and a completely different
numerical scheme. A comparison of experimental maximum
transmitted wave heights from Vidal et al. (1988) yielded ex-
cellent agreement. However, reflected wave heights and wave-
form were not compared. To compare them here, additional
experimental data are required. A new set of experimental tri-
als were run in the DeFrees Hydraulics Laboratory at Cornell
University, Ithaca, N.Y. This wave tank is 30-m long and
1-m wide, with a piston-type wavemaker, the movement of
which is controlled by computer. The porous breakwaters were
composed of an outer 1.5-cm wire mesh filled with gravel.
Two sizes of irregular gravel were used, with median diame-
ters d of 1.6 and 2.0 cm. The measured porosities ne for both
gravel sizes was 0.50. Two breakwater widths b were tested,
15 and 30 cm, and the water depth h was constant for all trials
at 10 cm. Solitary waves with amplitudes a of 1–4 cm were
generated, and free-surface time series were taken 1 m in front
of and 1-m behind the breakwater. All trials were repeated at
least once.

The 1D physical system was modeled numerically by spec-
ifying a solitary wave as the initial condition. The solitary
wave profile and the corresponding potential function are
taken (Wang 1993)
ERING / NOVEMBER/DECEMBER 2000
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IG. 1. Transmission and Reflection of Solitary Waves by 1D Porous Breakwater (Transmission Lines Initially Slope Downward:——,
umerical Results with a = 1,100, b = 0.55; — —, Numerical Results with a = 1,100, b = 0.81; ? —, Numerical Results with a = 1,800, b =
.1; Symbols Represent Experimental Data for d = 1.6 cm, b = 15 cm; d = 1.6 cm, b = 30 cm; d = 2.0 cm, b = 15 cm; d = 2.0 cm, b = 30 cm)
a a2 4z = sech k(x 2 ct 2x ) 1 sech k(x 2 ct 2 x ) (28)o oF Ga h
1 1

h

4
f = h [tanh k(x 2 ct 2 x ) 2 1] (29)ga oÎ

3

where

a
3

h1
k = (30)aÎh 4 1 1S Dh

c = g(h 1 a) (31)Ï

and xo = initial location of the solitary wave crest. To compare
with the experimental results, numerical simulations for each
of the four experimental setups (d = 1.6 cm, b = 15 cm; d =
1.6 cm, b = 30 cm; d = 2.0 cm, b = 15 cm; and d = 2.0 cm,
b = 30 cm) were run. For each setup, three sets of a and b
values (a = 1,100, b = 0.55; a = 1,100, b = 0.81; and a =
1,800, b = 1.1) were tried for each solitary wave height, a/h.
Fig. 1 summarizes the experimental and numerical results.
Note that the maximum amplitude of the reflected and trans-
mitted waves is scaled by the incident wave height. On aver-
age over the four setups, a = 1,100 and b = 0.81 yield the
best agreement, with transmitted wave height tending toward
a higher degree of correlation than reflected wave height. From
examination of Figs. 1(a–d), which are the same gravel size
but different breakwater width, one might conclude that the
best choice of a and b is weakly dependent on the width of
the breakwater. This indicates that the formulation for the hy-
draulic conductivity of the breakwater is slightly oversimpli-
fied. However, with the choice of a = 1,100 and b = 0.81 for
both sizes of rock, transmitted wave height can be predicted
to within 5% of the incident wave height.

Prediction of the wave heights is an essential measure of
the model accuracy, but waveform and phase are equally im-
portant, especially for 2D problems when wave-wave inter-
actions become important. To check waveform and arrival
time, a free-surface time-series comparison with experimental
data is performed. One such comparison is shown in Fig. 2.
JOURNAL OF WATERWAY, PORT, COASTA
FIG. 2. Comparison between Numerical (——) and Experi-
mental (— —) Time Series for a/h = 0.225, b = 30 cm, d = 2.0 cm,
a = 1,100, b = 0.81: (a) in Front of Breakwater; (b) behind Break-
water

The arrival time of both reflected and transmitted waves is
predicted very well. The arrival time and amplitude of the
secondary, trailing waves is not predicted well. In general, the
agreement in waveform and arrival time decreases with in-
creasing amplitude, probably due to the weakly nonlinear as-
sumption of the theoretical model.

DIFFRACTION OF SOLITARY WAVES

To date, there are no published experimental data sets for
wave interaction with a porous breakwater gap. To validate the
model in 2D, a comprehensive set of experiments were per-
formed at Universidad de Cantabria, Santander, Spain. The
trials were performed in a 27-m-long, 7-m-wide channel, using
an additional 2-m-wide side channel to control the generated
waves. A 4-m-long and 0.5-m-wide vertical porous breakwater
was located normal to wave incidence, approximately at the
center of the channel. Fig. 3 is a plan view of the experimental
setup. The porous structure was composed of irregular gravel
contained in two steel gabions. A slope of 1/30 exists between
the piston-type wavemaker and the breakwater. Leeward of the
structure, the solitary waves break on a gravel beach with a
1/13 slope. Water depth, wave height, and gravel diameter
were varied to yield a total of eight different trials. Table 1
L, AND OCEAN ENGINEERING / NOVEMBER/DECEMBER 2000 / 317



FIG. 3. Plan View of Experimental Setup (Solid Block Represents Porous Breakwater, Small Dots Are Locations Where Free Surface
Displacement Time Series Were Recorded)
TABLE 1. Experimental Parameters

Trial
(1)

Depth
(cm)
(2)

Wave height
(cm)
(3)

d
(cm)
(4)

1
2
3
4
5
6
7
8

20
20
22
22
31
31
40
40

4.2
9.3
4.2
9.2
4.0
8.8
3.8
8.3

3.87
3.87
5.35
5.35
5.35
5.35
5.35
5.35

summarizes the main characteristics of the cases considered.
For each of the trials, free surface elevation was recorded at
110 locations, using a group of 14 gauges with several repe-
titions. Note that data from Trials 2 and 4 were not used for
this analysis because a/h for these trials is near 0.45 and well
out of the range of applicability of the weakly nonlinear nu-
merical model.

To numerically model the experimental setup, a solitary
wave was sent into the domain through the left boundary,
where the wavemaker was located. The wave then traveled up
a slope toward the breakwater, just as in the experiments. The
side walls were modeled with reflective boundary conditions.
The right boundary, leeward of the breakwater, is modeled as
an open boundary, allowing the transformed solitary wave to
exit the numerical domain.

Although numerical-experimental comparisons were per-
formed for each of the gauge locations for all of the trials,
only four of these time-series comparisons are presented in
this paper. The comparisons are shown in Fig. 4; the numerical
result is the solid line, and experimental data are shown as the
dashed line. The location of each comparison is indicated by
the lower subplot.

Fig. 4(a) is a comparison in front of the breakwater. The
incident and reflected waves are clearly separated. This partic-
ular comparison is one of the worst, in terms of wave height,
of this trial. The comparison given in Fig. 4(c) is located be-
hind the breakwater, but not in the shadow zone, and shows
excellent agreement. Figs. 4(b and d), both located in the
shadow zone, also show excellent agreement in both waveform
and phase.

To condense all the time-series comparisons for a given trial
into one plot, a specific aspect of the comparison must be
examined. Maximum wave height, defined as the maximum
recorded free-surface elevation at each location, is usually the
most important design consideration and, therefore, will be
318 / JOURNAL OF WATERWAY, PORT, COASTAL, AND OCEAN ENGI
used. The difference in nondimensional maximum wave height
between experiment and numerics is inspected. Specifically,
this is calculated by

maximum experimental wave height

incident wave height

maximum numerical wave height
2

incident wave height (32)

At each measurement location, for each trial, the above dif-
ference is calculated. To get an average difference for all six
trials, the absolute value of the difference at each location is
taken and then averaged together. Results of the averaging are
given in Fig. 5. The black box in Fig. 5 indicates the location
of the porous breakwater, and the surrounding gray box shows
the inner limits of gauge locations. From this contour plot, it
is evident that the numerical model is excellent at predicting
wave height. This is especially true in the shadow zone, where
the average difference in maximum wave height between the
numerical model and experimental trials ranges from 0 to 3%
of the incident wave height. This contour plot shows that the
numerical model predicts maximum wave height, on average,
to within 5% of the incident wave height. The plot also shows
that the highest average differences occur near the corners of
the breakwater. At these locations, vorticity effects may be
important. The numerical model is irrotational, and this lack
of numerical vorticity may explain the wave height difference
between the numerical model and experiment near the corners.
Additional numerical-experimental comparisons, including
comparisons for the individual trials, are available via the In-
ternet from ^http://www.cee.cornell.edu/porousbwasce/&.

The numerical model can accommodate any size domain,
limited only by computation resources, with any direction of
incident wave. Fig. 6 shows three snapshots of a normally
incident solitary wave passing through a porous breakwater
gap. This simulation has an incident wave height-to-depth ra-
tio, a/h, of 0.2, the breakwater is 5-water-depths wide and 40-
depths long. All of the outer boundaries are reflective bound-
aries. Fig. 6(a) is the initial condition, with the solitary wave
approaching the breakwater from the left. In Fig. 6(b), the
transmitted wavefront is nearly aligned with the undisturbed
wavefront, and both the reflected wave and the undisturbed
wave begin to diffract. The last graphic, Fig. 6(c), shows dif-
fraction patterns both in front of and behind the porous break-
water.

Oblique incidence also can be accommodated. Fig. 7 shows
graphs of a 207 obliquely incident solitary wave passing
through a porous breakwater gap. The numerical parameters
NEERING / NOVEMBER/DECEMBER 2000



FIG. 4. Comparison between Experimental (— —) and Numerical (——) Runs for Various Locations in Trial 1, with a = 1,100, b = 0.81
(Bottom Subplot Indicates Locations of Time-Series Comparisons, Where Solid Block Is Porous Breakwater and Wave Approaches
from Left)
FIG. 5. Absolute Difference in Maximum Wave Height, Nor-
malized by Incident Wave Height, Averaged over All Six Trials

of this case are identical to the normal incidence case except,
of course, for the angle of incidence. Open boundary condi-
tions are applied on the right and top boundaries. The initial
condition is shown in Fig. 7(a), and in Fig. 7(c) the wave has
partially reflected off the front breakwater face. The transmit-
ted wave height for the oblique incident case is about 8% less
than the normal incidence case. This is due to the fact that the
obliquely incident wave ‘‘feels’’ a 6% thicker breakwater.

In the shadow zone of the porous breakwater, wave diffrac-
tion is the energy transformation mechanism. However, wave
JOURNAL OF WATERWAY, PORT, COASTA
diffraction occurs in two ways. Some of the wave energy dif-
fracts into the calm water behind the transmitted wave, cre-
ating a wave with a circular crest line. This form of diffraction
is the same as diffraction behind a solid breakwater. Second,
wave energy diffracts into the transmitted wavefront from the
incident wavefront, due to the discontinuity of wave ampli-
tude. This, the second type of diffraction, is akin to 1D pol-
lutant diffusion, as regions of high and low concentration
(wave height) move toward equilibrium. By comparing a solid
breakwater with a porous one, one can examine the relative
importance of the two types of diffraction.

A solid breakwater is numerically modeled by applying re-
flective boundary conditions along the solid breakwater faces,
where interfacial boundary conditions are enforced for the po-
rous breakwater simulations. To further validate the model,
experiments using a solid breakwater were performed at Uni-
versidad de Cantabria. The wave basin, measurement loca-
tions, and breakwater dimensions were identical to the porous
experiments, and water depth and wave heights tested were
the same as for Trials 3–8 in Table 1, yielding a total of six
different trials. Agreement between the experiments and the
model is excellent, with the average difference being <5% at
all locations over all six trials of nondimensional maximum
wave height (the same percent as in the porous breakwater
comparisons). Detailed numerical-experimental comparisons
are available via the Internet from ^http://www.cee.cornell.edu/
porousbwasce/&.

Fig. 8 shows six graphics, three of a solitary wave passing
a solid detached breakwater (top row) and three of a wave
passing a porous detached breakwater (bottom row). In these
simulations, the water depth is constant and the scaled wave
height, a/h, is 0.1. The breakwaters are 5-water-depths wide
and 80-water-depths long. For the porous breakwater, the
scaled rock size, d/h = 0.2, ne = 0.5, a = 1,100, and b = 0.81.
In Figs. 8(a and d) the wave height along the front face is at
a maximum, and in Figs. 8(b and e) the reflected waves are
moving away from the breakwaters and diffraction begins to
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FIG. 6. Spatial Profiles for Normal Incident Solitary Wave Interaction with Porous Breakwater Gap, with a/h = 0.2, b/h = 3, d/h = 0.2,
ne = 0.50, a = 1,100, b = 0.81

FIG. 7. Spatial Profiles for Oblique Incident (20&) Solitary Wave Interaction with Porous Breakwater Gap, with a/h = 0.2, b/h = 3, d/h =
0.2, ne = 0.50, a = 1,100, b = 0.81

FIG. 8. Spatial Profiles for Normal Incident Solitary Wave Interaction with Solid Detached Breakwater (Top Row) and Porous De-
tached Breakwater (Bottom Row)

FIG. 9. Experimental Time-Series Comparisons between Solid (— —) and Porous (——) Breakwater for Trial 6 (See Table 1) (Subplot
on Right, Where Breakwater Is Shown in Black and Wave Enters from Left, Indicates Spatial Location of Comparisons)
occur behind the breakwater. Examining the shadow zones in
Figs. 8(b, c, f, and g), less wave energy is diffracting to form
a wave with a circular crest line in the porous breakwater case
than in the solid breakwater case. In fact, most of the energy
that diffracts in the solid breakwater case to form this circular
wave diffracts into the transmitted wavefront in the porous
breakwater case. From this example one sees how the relative
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importance of the two types of diffraction can greatly change
the wave field in the shadow zone.

The experimental data also can be used to examine wave
field differences between porous and solid breakwaters. Fig. 9
shows two time-series comparisons between a solid and po-
rous breakwater and the corresponding locations. The data are
from porous breakwater Trial 6, and the solid breakwater data
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FIG. 10. Difference in Maximum Wave Height, Normalized by Incident Wave Height, between Solid and Porous Breakwater for Trial 3,
Using: (a) Experimental Data; (b) Numerical Simulation Results
are from an experiment with the same water depth and wave
height as Trial 6. Both comparisons are in the shadow zone,
with the comparison in Fig. 9(a) closer to the breakwater than
that in Fig. 9(b). In Fig. 9(a), examining the porous breakwater
time series, there are clearly two leading maximums, arriving
at roughly 8 and 9 s. The first maximum is the transmitted
wave, and the second is from the curved diffraction wave. As
expected, this curved diffraction wave in the porous break-
water data arrives at the same time as the diffraction wave in
the solid breakwater data, as both waves evolve due to the
same type of diffraction. The large waves that arrive in both
data sets at 11 sec are due to reflection off the channel side
wall. Ignoring these reflected waves, one can see that the po-
rous breakwater reduces the maximum wave height at this lo-
cation by about 20%. At certain locations in the shadow zone,
the maximum wave height with a porous breakwater is larger
than that with a solid breakwater. Fig. 9(b) is the comparison
at one such location, where the porous breakwater wave height
is 15% larger. The reason the porous height is larger is the
diffraction of incident wave energy into the transmitted wave-
front (i.e., the diffraction due to the amplitude discontinuity
between the incident and transmitted waves). The waves that
arrive at 11.5 s are due to reflection off the channel side wall.

Fig. 9 gives a comparison of wave height at only two lo-
cations. It would be useful to see the difference in maximum
wave height between solid and porous breakwaters at locations
all around the breakwater. Fig. 10 shows the difference in
maximum wave height, scaled by incident wave height, be-
tween porous and solid breakwaters. The contour plot in Fig.
10(a) is created using experimental data, and the plot in Fig.
10(b) is created using the numerical results. The comparison
is from Trial 3, with the solid breakwater trial having identical
water depth and incident wave height. At each location the
porous breakwater height is subtracted from the solid break-
water height, so positive contours indicate that the maximum
wave height is larger with a solid breakwater. As expected,
wave height in front of the breakwater is always larger with
a solid breakwater. Looking to the shadow zone, there is a
swath where the wave height with a porous breakwater is
larger, as indicated by the negative contours. Fig. 9(b) is lo-
cated in this region, and the reasons for the larger height are
described above. At all other locations, the wave height with
a solid breakwater is larger. Agreement between the experi-
mental [Fig. 10(a)] and numerical [Fig. 10(b)] contour plots is
excellent.
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CONCLUDING REMARKS

A high-order numerical model, including weak nonlinear
and dispersive effects, has been developed for wave interaction
with porous structures in the horizontal plane. For both 1D
and 2D problems, the model predicts wave height, waveform,
and arrival time excellently. The numerical model is validated,
on average, to <5% of the incident wave height for break-
waters made of irregular rock. Additionally, the model has
been validated for the solid breakwater case. A numerical com-
parison of solid and porous breakwaters shows how greatly
the wave field in the shadow zone differs due to the different
diffraction mechanisms occurring. Although only solitary
waves have been used in the present analysis, the model could
be applied to oscillatory waves. However, the empirical co-
efficients, a and b, and the formulation for the hydraulic con-
ductivity of the breakwater K might need to be reexamined.
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