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Wave and combined wave-and-surge overtopping was significant across a large portion of the hurricane

protection system of New Orleans during Hurricane Katrina. In particular, along the east-facing levees of

the Mississippi River-Gulf Outlet (MRGO), the overtopping caused numerous levee breaches. This paper

will focus on the MRGO levees, and will attempt to recreate the hydrodynamic conditions during

Katrina to provide an estimate of the experienced overtopping rates. Due to the irregular beach profiles

leading up to the levees and the general hydrodynamic complexity of the overtopping in this area, a

Boussinesq wave model is employed. This model is shown to be accurate for the prediction of waves

shoaling and breaking over irregular beach profiles, as well as for the overtopping of levees. With surge

levels provided by ADCIRC and nearshore wave heights by STWAVE, the Boussinesq model is used to

predict conditions at the MRGO levees for 10 h near the peak of Katrina. The peak simulated overtopping

rates correlate well with expected levee damage thresholds and observations of damage in the levee

system. Finally, the predicted overtopping rates are utilized to estimate a volumetric flooding rate as a

function of time for the entire 20 km stretch of east-facing MRGO levees.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

On August 29, 2005 Hurricane Katrina made landfall along the
northern Gulf of Mexico coast. Among widespread destruction
caused by the Hurricane was significant overtopping-related scour
and breaching of the Mississippi River Gulf Outlet (MRGO), a man-
made channel to the east of the New Orleans metropolitan area.
Damage was severe along this 20 km stretch of primarily earthen
levees, with crest elevations scoured down in excess of 3 m in
numerous locations. The Interagency Performance Evaluation Team
(IPET) (2006) was tasked with documenting the storm conditions
in this area, as well as providing probable causes for the observed
damage; the levee damage along the MRGO was caused by either
wave overtopping or combined wave-and-surge overtopping (ASCE
Hurricane Katrina External Review Panel, 2007).

Estimation of levee overtopping rates has traditionally made
use of empirical relations based on many experimental datasets.
While these relations initially focused on the simple, smooth-
sloped, trapezoidal levee, modifications have been made to
include complexities such as surface roughness, wave direction-
ality, and bermed profiles (e.g. van der Meer, 2002). The most
current tools, such as those arising from the EurOtop (Pullen et al.,
2007) efforts, are able to accommodate from general to complex
ll rights reserved.

t).
geometries, and are also able to provide uncertainties in the
estimates. The relative computational simplicity of the empirical
guidance makes them very useful for probabilistic design (Van
Ledden et al., 2007), however, these equations are only valid for
the parameter ranges used in their empirical curve fit. As will be
discussed in this paper, during Hurricane Katrina at the MRGO
levees, the established engineering guidance is not applicable for
a significant portion of the storm, and an alternative approach
must be used.

One approach which permits a high degree of hydrodynamic and
bathymetric flexibility is the use of time-dependent numerical
models. Here, the focus is on phase-resolving models, such as those
based on the Boussinesq equations. While such models do indeed
offer the user an ability to simulate arbitrary waves and structure
profiles, they also include approximations of important physics,
such as for the interaction of fluid with a rough bottom. These
approximations can lead to a level of uncertainty that is difficult to
quantify; the need to use a numerical model for a situation with
little or no measured data presents a validation paradox. However,
with continued calibration of these models with available data,
confidence can be developed and, at least initially, numerical models
can be used to supplement empirical engineering guidance.

A wide range of numerical models have been developed to
simulate overtopping processes. Initial studies employed the non-
dispersive shallow water wave equation model (e.g. Kobayashi
and Wurjanto, 1989). These approaches cannot capture the
frequency dispersion physics of nearshore wind waves, but, at
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the time, were one of a few model choices that were computa-
tionally practical. More recently, researchers have developed very
robust and accurate solvers for runup and overtopping with the
shallow water equations (Hu et al., 2000; Hubbard and Dodd,
2002), facilitating their use for engineering studies. There are few
overtopping studies using the Boussinesq equation model, an
example is Stansby and Feng (2004). One possible reason for this
is that the Boussinesq model, with its attractive ability to simulate
dispersive wind waves, generally requires a complex numerical
scheme for accuracy, a numerical scheme that does not readily
lend itself to capturing the complex flow patterns (e.g. flow re-
entrance on the leeside of a levee) common with overtopping.
These complexities are, generally, handled in a more physically
satisfactory manner in models that make no assumptions of
the vertical flow structure. Navier–Stokes based approaches
(e.g. Liu et al., 1999; Li et al., 2004; Shao et al., 2006; Ingram
et al., 2009) have shown to be accurate in predicting both
the average overtopping rates as well as the relatively small
scale dynamics that govern processes such as scour and impact
pressures. However, Navier–Stokes approaches are still very
computationally expensive to run, although this is changing, and
their engineering use is generally restricted to a small number of
specific wave and structure configurations.

To compare with the numerical models, and more importantly to
develop the much relied upon empirical overtopping guidance, there
exists a wealth of experimental data. Though old, the regular wave
data of Saville (1955) is perhaps the mostly commonly found dataset
in numerical validations (e.g. Kobayashi and Wurjanto, 1989; Dodd,
1998; Hu et al., 2000). This, and a large body of much more recent
data for a wider range of hydrodynamic and levee configurations (see
for example De Rouck et al., 2009 and other papers in same special
CLASH issue of Coastal Engineering) has been integrated into the
empirical equations that most commonly guide engineering design in
current practice. While the empirical methods will be a reasonable
approach for the large majority of possible levee configurations, there
will always be odd geometries or hydrodynamic conditions, where
proper application of such methods is unclear. In these cases, the use
of a validated numerical model, either on its own or coupled with an
empirical approach, represents an attractive way to handle such
complexity. It will be one of the main goals of this paper to develop a
numerical model application procedure for an area with very
uncommon beach profiles.

The approach developed in this paper is centered on the use of a
Boussinesq wave model to provide detailed and accurate predictions
of wave runup and overtopping of earthen levees. Validation of the
wave model for interaction with levees will first be demonstrated.
This validation will use both small and large scale experimental data
for runup and overtopping. With confidence that the Boussinesq
model can accurately capture wave shoaling, breaking, runup, and
overtopping of irregular bathymetry/topography, it will be applied
at four different transects along the east-facing MRGO levees. The
transects examined here are earthen levees, without sheet-piles or
flood gates. Predictions of overtopping rates and levee crest velocities
will be correlated, in a qualitative manner, to the observed level of
damage. Finally, the Boussinesq model output will be used to
characterize the likely overtopping rate along the entire 20 km-long
section of levees, and integrated overtopping rates will be presented.
2. Review of MRGO damage from pre- and post-Katrina lidar
surveys

The levee system along the MRGO consisted, pre-Katrina, of a
complex system of earthen levees, sheet-piles, and flood gates.
Crest elevations varied from 5.5 to o4 m along the 20 km length
of the east-facing levees. These, and all elevations presented in
this paper, are referenced to NAVD88 2004.65. Wave heights and
water levels varied weakly along the length, with the northern
most levees experiencing the highest surge and waves. From the
IPET study, maximum surge elevations during Katrina in this area
were approximately 5.5 m according to post-Katrina survey
analysis and ADCIRC simulations, and maximum significant wave
heights were near 1.75 m, with peak periods of 13–14 s, according
to STWAVE results. The peak wave conditions occurred about 2 h
after the peak surge condition.

Levee damage, in terms of breaches and scour, was widespread
and extensive along the MRGO levees. Before- and after-Katrina
lidar surveys of four different segments are given in Figs. 1–4.
These images show a spatially irregular damage pattern
consistent with breaching, where post-Katrina levee elevations
regularly change 2 m across a horizontal distance of tens of
meters. These four segments are shown in detail here, as they will
be the focus of the detailed hydrodynamics modeling presented in
Section 7.

To further elucidate the magnitude of scour, Fig. 5 provides the
change in levee crest elevation for the entire 20 km of the east
facing levees. The northern third of the segment, from 0 to 7 km in
Fig. 5, experienced a fairly constant level of scour on the order of
2 m, although at the far northern end, where the levee crest
elevations are highest, there is only minimal erosion. Along the
middle third of the segment, the scour is irregular and is largely a
function of whether the levee consisted of an earthen mound,
sheet pile, or flood gate. Finally, in the last, southern-most third of
the segment, from 14 to 20 km in Fig. 5, the damage is relatively
low to near zero. Also in this figure are shown the four locations to
be examined during the Boussinesq model analysis, all of which
are earthen levees. The first three points experienced very similar
hydrodynamic conditions, but have different design profiles,
different crest elevations, and experienced different damage
levels. The fourth point represents conditions on the opposite
end of the levee system, where the damage was relatively light.
It is worthwhile to note that, when the MRGO Boussinesq
simulations described later in this paper were originally
performed during the IPET study, the detailed damage
information given in this section was not yet known. In this
sense, the inferred damaged level from the Boussinesq ;model
results represents a blind comparison with the lidar data.
3. Current engineering guidance for overtopping calculations

3.1. Wave overtopping of a levee

When the still water level is below the levee crest but the
waves are sufficiently large, volumetric overtopping of the levee
due to waves only can occur. The CEM (2002) , TAW (van der Meer,
2002), and EurOtop (Pullen et al., 2007) manuals provide wave
overtopping formulae for bermed and straight impermeable levee
slopes based on a wide range of small- and large-scale laboratory
experimental data. The equations are similar. Therefore, only the
TAW/EurOtop relations will be given as they are more recent. The
average volume rate of irregular wave overtopping per unit length
of structure q is given by

qffiffiffiffiffiffiffiffiffiffiffi
gH3

mo

q ¼
0:067ffiffiffiffiffiffiffiffiffiffiffi

tana
p gbxom�1:0 exp �4:75
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xom�1:0gbgf gbgv
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Fig. 1. Before and after Hurricane Katrina lidar survey data along the northern-most section of the MRGO levee system.

Fig. 2. Before and after Hurricane Katrina lidar survey data along the northern-middle section of the MRGO levee system.
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Fig. 3. Before and after Hurricane Katrina lidar survey data along the southern-middle section of the MRGO levee system.

Fig. 4. Before and after Hurricane Katrina lidar survey data along the southern-most section of the MRGO levee system.
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Fig. 5. Before and after Hurricane Katrina levee crest elevations, taken from the lidar data, along the entire length of the east-facing MRGO levee system. In the lower

subplot, the change in elevation is shown. The four ‘‘points’’ indicate the locations at which the Boussinesq model is used to simulate storm conditions.
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where Rc is the structure crest height above the still water level, g

is acceleration of gravity, tana is the seaside slope of the levee,
and the various other parameters will be described in this section.
Note that the above overtopping equations are dimensionally
consistent. The significant wave height is defined as Hmo ¼ 4

ffiffiffiffiffiffiffi
m0
p

where m0 ¼ zeroth moment of the wave energy density spectrum.
The Iribarren parameter, xom�1, is defined as

xom�1 ¼
tanaffiffiffiffiffiffiffiffiffiffiffiffi
som�1
p ; som�1 ¼

Hmo

Lom�1
; Lom�1 ¼

gT2
m�1:0

2p ð3Þ

The spectral period, Tm�1:0 ¼m�1=m0, where m�1 ¼ first negative
moment of the wave energy density spectrum, is used in Eq. (3).
Reduction factors included are gf ¼ influence of surface rough-
ness, gb ¼ influence of berm, gv ¼ influence of wall on slope,
and gb ¼ influence of angle of wave incidence. The CEM (Section
VI-5-2) provides a summary of the studies conducted to generate
coefficients for Eq. (1) for varied structure slopes, wave conditions,
and roughness characteristics. Some typical values for coefficients
are gv ¼ 1 for no wall, gv ¼ 0:65 for a wall at the top of the seaward
slope, and gb ¼ 1 for normally incident waves. The influence of
oblique waves is negligible for long-crested waves between
normal and 301.

TAW suggests that Eqs. (1) and (2) are valid for slopes 1V:1H to
1V:8H and recommends 0:5oxom�1o10 with the range 8–10
being less accurate. In addition, the valid parameter range for
Eqs. (1) and (2) is

0:3o
Rc

Hs

ffiffiffiffiffiffi
sop
p

tana
1

gf gbgvgb
o2 ð4Þ

According to CEM Table VI-5-6, damage to grass-covered levees
will begin to occur if q¼ 0:00120:01 m3=s=m ðq¼ 1210 l=s=mÞ.

The empirical equations above were based on best central fits to
mostly small-scale laboratory data with a small amount of larger
scale data. The equations are limited to the range of the limited test
conditions. Much progress has been made during recent European
overtopping studies as additional data and analysis have become
available. The result has been an evolution of the empirical
coefficients for these equations. However, this illustrates the
limitations of equations based nearly entirely on best fits to limited
data. Despite very talented and experienced researchers, data alone
do not support conclusive guidance for these complex physical
processes. Additionally, the erosion limit states discussed above are
based on extremely limited field tests and have not yet been
validated. Finally, because virtually all of the experimental data is for
wave overtopping without the presence of steady flow, or for steady
flow with no overtopping, at the time this study was done, there was
no empirical guidance for the combined overtopping and steady-
flow conditions on the MRGO levee during Hurricane Katrina. Since
then Hughes and Nadal (2009) have conducted a generalized study
of combined overtopping and steady flow.
3.2. Steady-flow overtopping of levee

When the water level is higher than the crest of the levee,
steady flow will occur. This physical process was described clearly
by Powledge et al. (1989). Flow is subcritical on the seaward side
of the levee and supercritical on the landward side. Flow on the
seaward side will not be erosive for steady flow unless the crest
materials are highly erodible. Near the landward limit of the levee
crest, the flow transitions to critical and then supercritical.
Materials can erode in this region depending on the flow velocity
and the erodibility of the materials. The leeside crest corner is
particularly susceptible to erosion if the material is erodible.
Along the levee backside, the flow accelerates to fully developed
supercritical and proceeds downslope until it reaches the base of
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the slope or the leeside pool where a hydraulic jump develops.
Erosion can occur due to high velocities on the lee side and due to
turbulence under the hydraulic jump. The toe of the slope is the
most common location for initiation of erosion. The erosion
typically progresses upslope as a headcut develops.

Steady-flow overtopping of levees is similar to overtopping
of a broad-crested weir, which is covered in hydraulics textbooks.
An evaluation of the energy balance across the weir yields the
relation for discharge per running length:

q¼ ð2=3Þ3=2 ffiffiffi
g
p
ðhs � hcÞ

3=2
¼ 0:54

ffiffiffi
g
p
ðhs � hcÞ

3=2
ð5Þ

where hs is the seaside water (surge) elevation, hc is the levee
crest elevation, and g is the acceleration of gravity. Note that the
levee freeboard, Rc , is equal to hc � hs. Eq. (5) is dimensionally
consistent and is commonly applied to levee overtopping
discharge. Grass on levees produces some reduction in over-
topping flow; however, this reduction is often neglected for
conservative design.

3.3. Combined wave and steady-flow overtopping

There is little empirical design guidance for the condition
when the water level is above the crest and there is both steady
flow and significant wave overtopping. It is expected that this
Fig. 6. Schematic diagram of moving boundary.

Fig. 7. Schematic diagram
condition would be highly erosive, particularly for shallow water
on the crest. Equations were proposed by Schüttrump et al. (2001)
and refined in the Eurotop manual for zero-freeboard overtopping.
The Eurotop manual suggested that zero-freeboard wave and
steady-flow overtopping equations be linearly superimposed to
compute combined overtopping. Recently, Reeve et al. (2008) and
Hughes and Nadal (2009) have performed numerical and physical
studies, respectively, of combined wave and surge overtopping.
These provide a new set of data and curve fits for situations with
small positive to small negative freeboard, and corresponding sets
of empirical guidance.
4. Detailed hydrodynamic modeling

In this section, the Boussinesq modeling approach will be
introduced. The governing equations, numerical scheme, and
moving boundary approach will be presented.

4.1. Boussinesq equations

The conservative form of weakly dispersive and fully nonlinear
depth-integrated form of Boussinesq equations in one-horizontal-
dimension are expressed as (e.g. Kim et al., 2009)

@H

@t
þ
@HUa

@x
þDc ¼ 0 ð6Þ

@HUa

@t
þ
@HU2

a
@x
þgH

@z
@x
þgHDx

þUaDc � Rx
b ¼ 0 ð7Þ

where H¼ zþh is a total water depth, z is water surface elevation,
h is water depth. Ua is velocity at water depth za in the x direction
The Dc and Dx are the higher order terms that include the bottom
turbulence and dispersive properties. To approximate the bottom
stress, a quadratic friction equation is used:

tx
b ¼

Cf u
ffiffiffiffiffi
u2
p

r ð8Þ

where tx
b is the bottom stresses in the x direction, r is the fluid

density, and u is the depth averaged velocity in the x direction.
The roughness coefficient Cf ¼ f=4 (Chen and Jirka, 1995) and f is
estimated with a given roughness height, ks, using the Moody
diagram, which here is calculated by the explicit formula given by
Haaland (1983). The Rx

b term is the wave breaking related
dissipation term proposed by Lynett (2006). More detailed
descriptions of each term can be found in Kim et al. (2009) and
Lynett (2006).

4.2. Numerical scheme

Complete details of the numerical solution scheme can be
found in Kim et al. (2008), and a brief overview is given here.
A third-order Adams–Bashforth predictor and the fourth-
order Adams–Moulton corrector scheme are used for the time
of moving boundary.
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Table 1
Experimental setup of the BEB sinusoidal wave overtopping.

Test no. h (m) hs (m) hc (m) H (m) T (s) s

1 0.529 0.081 0.054 0.107 1.549 3.0

2 0.529 0.081 0.107 0.107 1.549 3.0

3 0.609 0.161 0.054 0.107 1.549 3.0

4 0.609 0.161 0.107 0.107 1.549 3.0

5 0.609 0.161 0.054 0.081 1.858 3.0

6 0.529 0.081 0.054 0.107 2.616 3.0

7 0.529 0.081 0.107 0.107 2.616 3.0

8 0.529 0.081 0.161 0.107 2.616 3.0

9 0.609 0.161 0.054 0.107 2.616 3.0

10 0.609 0.161 0.107 0.107 2.616 3.0

11 0.609 0.161 0.161 0.107 2.616 3.0

12 0.529 0.081 0.054 0.081 3.634 3.0

13 0.609 0.161 0.054 0.081 3.634 3.0

14 0.609 0.161 0.107 0.081 3.634 3.0

15 0.609 0.161 0.161 0.081 3.634 3.0

16 0.609 0.161 0.215 0.081 3.634 3.0

17 0.529 0.081 0.054 0.107 2.616 1.5

18 0.529 0.081 0.161 0.107 2.616 1.5

19 0.448 0.000 0.054 0.107 2.616 1.5

20 0.448 0.000 0.107 0.107 2.616 1.5
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integration. The spatial representation of the numerical grid is a
Finite Volume scheme. For the calculation of leading-order
(shallow water) terms in the governing equations, a fourth-order
compact MUSCL TVD (monotone upstream-centered scheme for
conservation laws–total variation diminishing) scheme (Yamamo-
to and Daiguji, 1993) is used. For the second-order (dispersive)
terms, a cell averaged finite volume method is implemented.
Spatial and temporal resolution of the numerical results will be
expressed through the grid spacing, Dx and the Courant number,
Cr . The scheme has been shown to be highly stable and accurate,
and capable of capturing shock fronts without numerical disper-
sion errors.

4.3. Moving boundary scheme

In this paper, a very simple physical condition is proposed for
the moving boundary scheme. Essentially it follows the approach
proposed by Liu et al. (1995) except for one condition described
below. As shown in Fig. 6(a), if the water surface level at i is lower
than the level of the dry bed at iþ1, then the variables at iþ1=2
are evaluated by assuming that there is a wall at iþ1. Here the i

index represents a spatial cell location. On the other hand, if the
water surface level at i is higher than the level of the dry bed at
iþ1, as in Fig. 6(b), the water is supposed to flow into the cell iþ1.
Note that this moving boundary scheme assumes discontinuous
bottom topography, so the modified surface gradient method that
can be applied on discontinuous bottom topography should be
used (Kim et al., 2008). Without employing such a method, non-
physical oscillations can be created at the boundary of the wet and
dry bed.

A physical constraint is added to the scheme, determined
largely from experience in using it. Similar to other moving
boundary schemes (e.g. Lynett et al., 2002), some minimum
allowable total water depth must be chosen. When the total water
depth is very small, the computed velocity can become very large,
often due to a poor representation of bottom friction for these
cases, causing the required time step for stability to plummet.
Here, if the total water depth is oeh, then the computed velocity
is set to zero. For idealized flow simulations on a simple bottom,
eh can be o1� 10�6 m or less. However, for complex flow
simulations, eh ¼ 1� 2� 10�4 m is recommended.

However, for a particular situation shown in Fig. 7, non-
physical and unstable computations can occur even if the above
described moving boundary scheme is implemented correctly. In
Fig. 7(a), physically, the water at cell at i must not affect the flow
at iþ1, but the water at iþ1 can affect the flow at i. Therefore, in
order to reflect this particular situation in the numerical model,
the flux at iþ1=2 is divided into two parts following the Fig. 7(b)
and (c). The fluxes for each interface side are calculated
independently, and then combined. In detail, in one-dimensional
space,
(1)
 Divide the case (a) into (b) and (c) as in Fig. 7.

(2)
 For the case of (b), compute the fluxes for cell i as if there was

a vertical wall at iþ1=2.

(3)
 For the case of (c), assume the bottom level of cell i to be the

same with the bottom level of cell iþ1, and compute the
fluxes of the cell iþ1 (as if on flat bed).
(4)
 Sum the computed fluxes at iþ1=2 from case (b) and (c), and
use that total flux in the application of the governing
equations for cells i and iþ1.
Fig. 9. Laboratory experiment setup of BEB.
With this moving boundary scheme, all equations are solved
directly without extrapolations as used in Lynett et al. (2002), for
example. Thus, it is anticipated that physical solutions with less
loss of mass can be obtained and overtopping of steep walls can be
solved as well.

Small numerical oscillations may be still created at the shoreline
where flow is particularly energetic, and is typically due to the
dispersive terms, and their high-order expression. To get rid of the
unwanted numerical oscillations, a combination of shallow water
equations and Boussinesq equations is used. In this paper, if one or
more of the three cells to the left or three cells to the right have
the total water depths oeh, the shallow water equations are solved;
otherwise Boussinesq equations are employed. This criterion is
physically reasonable as, in shallow water, that is near the shoreline,
depth-integrated flow properties can be reasonably predicted by the
conventional nonlinear shallow water models.
5. Validation of Boussinesq model for wave runup and
overtopping

In this section the performance of the proposed moving
boundary scheme is tested. The validations are based on the
comparisons to experiments with deterministic approach. Even
though relatively simple waves are generated at the offshore area
of modeling domains, the physical processes become complex
around the levees. Therefore, under the assumption that the
Boussinesq equations model can predict the behavior of runup
and overtopping reasonably, it can be expected that reliable
overtopping rate can be obtained if proper time series at
boundary, even irregular, is given from ADCIRC and STWAVE.



ARTICLE IN PRESS

Fig. 10. Overtopping fluxes over the Saville levees. In each group of bars, from left to right: Exp: Saville (1955); K&W: Kobayashi and Wurjanto (1989); Dodd: Dodd (1998);

I&L: Sitanggang and Lynett (2009); Bous: present study; and Formulae: empirical equations in Section 3.1.

Fig. 11. Laboratory experiment setup of HR Wallingford.
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Note that no modification of the bathymetry, such as smoothing/
filtering, is done for any of the computations in this paper.
5.1. Solitary wave runup and rundown

For the verification of the moving boundary scheme, one of the
most commonly compared solitary wave runup and rundown
datasets, investigated experimentally by Synolakis (1987), is used.
In Synolakis’ experiments, the beach slope was 1:19.85 and
various wave nonlinearities, e the wave height to depth ratio, were
tested. To compare with the data, a wave with e¼ 0:28 is
simulated; this solitary wave breaks before reaching the shoreline.
For the numerical simulations, Dx¼ 0:3 m, Cr ¼ 0:5 and, for the
bottom friction, ks ¼ 0:1 mm. During this breaking wave runup
simulation, the breaking dissipation term Rb is incorporated into
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Fig. 12. Snapshot of computed water surface profiles. Wave heights: (a) 0.07 m, (b) 0.10 m, and (c) 0.12 m.
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the momentum equations. The computed results are compared
with the experimental data in Fig. 8. The proposed moving
boundary scheme produces very good agreement and stable
results for both the runup and rundown process. These
comparisons provide a measure of confidence that the moving
boundary scheme can reproduce well-controlled, small-scale
measurements.
5.2. Overtopping of a simple levee

Here, overtopping experimental data reported in Saville (1955)
are compared with computational results. The experiment was
conducted by the Beach Erosion Board (BEB). The flume was made
of concrete and was 36.6 m long, 1.52 m wide, and 1.52 m deep. At
upstream side, a wavemaker was used for regular sinusoidal wave
generation. At the downstream end of the flume, levee structures
were built. A structure with slope 1:s was fronted by a fixed 1:10
sloped floor. The setup of the waves and the structures are
summarized in the Table 1 and Fig. 9.

In the numerical simulations, the sinusoidal (regular) wave is
generated using an internal source generator combined with the
sponge layer on the upstream boundary. Dx¼ 0:05 m, Cr ¼ 0:5, and
ks ¼ 0:0006 m are used and the overtopping fluxes are evaluated
on the levee crest. The breaking dissipation terms are included in
all the computations. For the comparisons, other computed results
by the shallow water equation models of Kobayashi and Wurjanto
(1989) and Dodd (1998), and the Reynolds averaged Navier–
Stokes model by Sitanggang and Lynett (2009) are compared
together in Fig. 10. Additionally, the overtopping predictions
provided by the empirical guidance, using the equations given in
Section 3.1, are shown. Note that, when using the empirical
equations of Section 3.1, the average beach slope is used for the
levee slope, all reduction coefficients are set to 1.0, and the wave
heights as given in Table 1 are used directly. If one were to convert
the regular wave Saville heights to an ‘‘equivalent’’ significant
wave height by multiplying them by a factor of

ffiffiffi
2
p

, the empirical
overtopping predictions would all be considerably larger than
those presented in Fig. 10. No perfect match is observed, and, for
the tests nos. 8, 11, and 20, the computed results were either much
smaller or larger than the measured data. Comparing the
numerical results and the empirical predictions, the average
agreement with the experimental trails is similar, with the
numerical results yielding clearly better results for some cases
(e.g. nos. 6, 12, 17, and 19) and the empirical results more accurate
in others (e.g. nos. 11 and 20). In the overall sense, the present
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computed fluxes are in reasonable agreement with the
experimental data and consistent with previously published
results.
5.3. Overtopping and backside wave regeneration

HR Wallingford performed a set of experiments on solitary wave
overtopping of levees (Dodd, 1998). Here, a simple incident
condition, the solitary wave, propagates over a simple trapezoidal
levee. Thus from the setup perspective, this might appear as an
almost trivial problem. However, with measured time series of water
surface elevation in front, over the crest, and along the backside of
the levee, we have an ideal numerical benchmark. Such data allows
precise comparisons of the predicted physics, uncontaminated by
unknown reflections common with wave train studies, and not
reliant on experimental means and deviations, which can be
predicted with accuracy by a numerical model without said model
ever properly capturing the true physics of the problem. If a model
can properly recreate the detailed time series of Dodd (1998), it
should be expected that the model is robust for overtopping studies,
and can be generally applied. It is the approach of this paper
that, with proven accuracy for general random wave evolution
(e.g. Lynett, 2006), demonstrated accuracy for a standard over-
topping benchmark (Saville, 1955), and reasonable agreement for the
challenging Dodd data, the presented Boussinesq model can be
acceptable for use in the engineering study that comprises the last
component of this paper.

The wave flume used in the Dodd (1998) experiments was
40 m long and 0.5 m wide and filled with water to h1 ¼ 0:7 m at
the seaward side of the breakwater and h2 ¼ 0:3 m behind the
levee. A levee with 1:4 seaward slope and 1:2 leeward slope was
built at the right end of the flume, as shown in Fig. 11. The height
of the levee was 0.5 m and the width of the crest was 0.16 m, and it
was fronted by a 1:50 inclined floor of height 0.4 m. Five gages
were installed on the top of and behind the levee. The first wave
gage (13) was located 0.015 m behind the leading edge (A), the
second gage (14), and third gage (15) were installed 0.055 and
0.11 m from the first gage, respectively. The fourth gage (16) was
located 0.72 m behind the backside edge (B) of the levee. The last
gage was installed 0.44 m behind the back toe (C) of the levee as
given in Fig. 11. More details of the experimental setup is given in
Dodd (1998).

With the wave gages located behind the structure, this dataset
provides the rare opportunity to compare not only the over-
topping wave, but the regenerated wave behind the structure.
Correct simulation of this regenerated wave is considerably more
difficult than capturing runup or even overtopping rates. It
requires that the model properly simulate the flow down the
backface of the structure as well as the reentrance of the
overtopping flow into the calm backside water. This latter aspect
is the most challenging, and requires a robust and stable method
of determining water fluxes in and out of a numerical cell.

Three wave height cases are simulated with the numerical
model. The Dx¼ 0:04 m, Cr ¼ 0:5 and ks ¼ 0:0006 m for plywood
are used. The computed profiles of the wave overtopping
simulation data are shown in Fig. 12. The left side figures show
the profiles when the waves begin overtopping and the right side
figures show the small regenerated wave profiles behind the
levee. These profiles are verified by the comparison with the
laboratory experiment time series data in Figs. 13 and 14. Overall
agreement of overtopping with gages 13, 14 and 15 are reasonable.
At gages 16 and 17, on the lee side of the levee, the proposed
numerical model predicts the dispersive wave motions accurately,
which cannot be observed in shallow water equation based model
as described in Dodd (1998). There is a clear bias for the numerical
model to overpredict the water elevation on the crest, with
maximum local errors near the peak on the order of 50%. However,
in this area, the model is properly capturing the qualitative shape
and arrival time of the wave. Aside from numerical error, this
water elevation discrepancy might be due to an incomplete
presentation of the initial wave condition, for which there is no
provided time series with which to calibrate the incident wave.
Overall, the agreement of the Boussinesq model presented here is
equal to the Navier–Stokes comparisons of Sitanggang and Lynett
(2009) and equal to or better than the shallow water model
comparisons of Dodd (1998). With the comparisons presented
here, and the established database of literature showing the
accuracy of Boussinesq surf zone predictions, it is expected that
the model will provide high-confidence nearshore transformation
and reasonable overtopping estimates for variable, complex, and
steep bathymetry and topography.
6. Simulated overtopping rates along east-facing MRGO levees
and correlation with damage observations

6.1. Boussinesq simulation setup

Wave impacts on levees along MRGO are simulated at four
specific transects. These four locations correspond to points
located within the topographic surveyed levee sections given in
Figs. 1–4. The four locations span the length of the east-facing
MRGO levees, and represent the range of conditions experienced
along the MRGO. The levee profiles are taken from the ‘‘Lake
Pontchartrain, LA and Vicinity Design Memorandum No. 3’’ (DM),
dated November 1966. Following this DM, the locations examined
here are indexed starting from the north, Point 1 (characteristic of
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Fig. 16. Boussinesq simulation output summary for MRGO Point 1. The levee cross section is shown in the upper left, and the waves approach the structure from the left. In

the lower right (overtopping) subplot, note that the q predicted by the empirical Eqs. (1) and (2), shown by the line with dots, is only plotted for times where the empirical

formulation is valid, following Eq. (4). The empirical calculation uses a berm reduction coefficient of 0.9.
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levee shown in Fig. 1), Point 2 (characteristic of levee shown in
Fig. 2), Point 3 (characteristic of levee shown in Fig. 3), and Point 4
(characteristic of levee shown in Fig. 4). These four locations are
also shown with more precision in Fig. 5. The levee profiles from
the DM are shifted vertically such that the levee crest elevation
matches data from pre-Katrina lidar surveys. Levee crest elevation
varies widely along the MRGO, from elevations approaching 5.8 m
(NAVD88 2004.65) near at the northern end of the east-facing
MRGO levees to values o4 m in a region of high spatial variability
of crest elevation near the Lake Borgne outlet (x¼ 8 km in Fig. 5).
As stated, each of these four levee locations are located near
the MRGO channel. This channel is approximately 12 m in depth,
with bank side slopes of 1 on 5 to 1 on 10. These bank sides
connect to the levee berm, which varies in length, elevation, and
profile shape along the length of the MRGO channel. The
simulations indicate that waves break sharply as they first reach
the berm, in a manner similar to waves hitting a steep shelf or
reef. It is this particular characteristic, the short transition from a
deep channel to a wide, flat, irregular berm, that makes
application of empirical methods challenging. One would need
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Fig. 17. Boussinesq simulation output summary for MRGO Point 2. The large stars in each of the subplots indicate times when the surge elevation is greater than the levee

crest elevation. See the caption for Fig. 16 for other details about the plots.
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to specify a berm reduction factor for this unique case, for which
there is no established guidance.

Surge and wave conditions are provided by ADCIRC and
STWAVE simulations (Interagency Performance Evaluation Team,
2006), recorded just offshore of the levees in the MRGO. Wave and
surge conditions are taken at chosen times throughout the storm
from 0630 to 1500 UTC on the 29 August 2005, and the quasi-
steady conditions at these times are simulated (i.e. for a single
simulation, at for example 1230 UTC, the incident wave condition
is constant). It is reiterated that the hydrodynamic conditions
employed here are from the original IPET study; subsequent
studies may provide slightly different conditions. To estimate the
worst case hydrodynamics, the 2D spectra provided by STWAVE
are reduced to 1D spectra, and the numerical simulations are
performed on a 2D(V) cross-section of the levee. This approach is
justified by the observation that the primary wave direction is
normal to the MRGO levees, and so predicted 2D(V) hydro-
dynamics will be a reasonable representation of the full 3D
problem. It is noted that while there are little available data to
determine the correlation between levee (or seawall) overtop-
ping/runup and peak incident angle for multi-directional spectra,
there are indications that the incident angle is not strongly
correlated to overtopping rates for incident angles less that 303,
with maximum overtopping occurring at small, but off-normal
angles (Owen, 1980). Significant wave heights range of 0.5–1.75 m
with peak periods from 4 to 13 s. There is an rapid transition from
low periods to high peaks periods in the STWAVE data; this is due
to the wave spectra becoming abruptly swell dominated.
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Fig. 18. Boussinesq simulation output summary for MRGO Point 3. The large stars in each of the subplots indicate times when the surge elevation is greater than the levee

crest elevation. See the caption for Fig. 16 for other details about the plots.
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For each of the four locations, 24 times are simulated, with a
range of 0630–1500 UTC, in 30 min increments. The grid resolu-
tion used by the simulations is 1 m. Roughness is added to the
levee surface to approximate turf; a characteristic bottom rough-
ness height, ks, of 1 cm is used for all simulations. The simulations
provide ‘‘instantaneous’’ information, predicting variations on the
order of the time step of the numerical model, approximately 1

10 of
a second. Each simulation is run for 15 min of quasi-steady time.
To distill this information for engineering use, time series of free
surface elevation, depth-averaged velocity, and volume flux is
written at the levee crest. From these time series, time-averaged
values and mean maximum values (mean values under the wave
crest) are calculated along the levee profile.
6.2. Boussinesq simulation results

An example of the detail provided by these simulations is given
in Fig. 15. This figure is a single snapshot (i.e. just one of 30,000
time steps) at location point 2. The physical time corresponding to
this condition is 1230 UTC.

A complete summary of the numerical results for the four MRGO
locations is provided in Figs. 16–19. The time series of overtopping
flux and crest velocity are very closely correlated to the time series of
surge. The peak in wave height, occurring 2.5 h after the surge
peak leads to a temporal extension of the overtopping, where some of
the levees experience overtopping until 1600 UTC. Mean maximum
values, due to the wave crest, are 1.5–8 times larger than the
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Fig. 19. Boussinesq simulation output summary for MRGO Point 4. See the caption for Fig. 16 for other details about the plots.
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time-averaged values. Note that in these figures, in the overtopping
subplot (lower right), there is also shown the overtopping prediction
based on Eqs. (1) and (2), but these values are only plotted when the
validity range, Eq. (4), is satisfied. This validity range is not satisfied
during the great majority of the time, due mostly to a small, or
negative, freeboard. In addition, the greatest overtopping rates are
driven by combined wave and surge; as mentioned there is no
established empirical equation for this situation. The empirical
overtopping guidance, on its own, is not helpful in estimating the
overtopping rates of the MRGO levels during Hurricane Katrina.

For all locations along the length of the MRGO, there is some
overtopping from 1130 to 1430 UTC. The maximum overtopping
flux takes place between 1230 and 1300, and occurs at the time of
peak surge for all cases. Time-averaged overtopping rates range
from 0 to 2000 l/s/m. Values on the low end of this range are due
to wave overtopping with a surge less than the levee crests
elevation, whereas values on the high end arise from surge
elevations 1.2 m above the levee crest, and likely represent the
worst conditions experienced along the entire MRGO.

Wave setup does not play a significant role during the peak
conditions. This is due to relatively small waves at the time of
peak surge (0.6–1.0 m), and the observation that the waves
typically initiate breaking just 1

4 2 1
2 of a wavelength before

overtopping the levee, and thus the wave momentum is carried
over the levee, rather than through a dissipative surf zone. Later
during the day, near 1500 UTC, the wave height reaches 2 m, and
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there is wave setup on the levee front face on the order of 0.3–
0.6 m. At this time, however, overtopping is minimal. The levee
profile geometry appears to play a strong role in setup. Note that
for Location 2 (Fig. 15), the wave setup at 1800 UTC is in excess of
1 m, while the incident wave height is just o1 m. The reason for
this is a surge elevation which is right below the berm elevation.
For this particular profile, the berm configuration is flat, similar to
a shelf, and water continually piles onto the berm.

6.3. Correlation with Boussinesq-predicted overtopping rate and

observed damage

From the Boussinesq-predicted overtopping rates it would be
anticipated that locations near point 2 (peak q¼ 750 l=s=m) and 3
(peak q¼ 2200 l=s=m) would have experienced extreme damage,
point 1 (peak q¼ 80 l=s=m) would have experienced moderate
damage, and point 4 (peak q¼ 10 l=s=m) would have experienced
negligible to minor damage as the peak overtopping rate does not
exceed the 10 l/s/m threshold for the initiation of erosion. These
trends are validated with comparison to the before and after lidar
images and data given as Figs. 1–5 which provide the same
conclusions.

The benefits, and accuracy, of the Boussinesq model are further
exemplified with additional scrutiny of point 4. Again, the
simulations show peak overtopping rates near the initiation point
of erosion, and the lidar data show only minor scour. On the other
hand, the empirical overtopping equations, in the few hours that
they are valid, indicate overtopping rates roughly 10 times larger
than those predicted by the Boussinesq model. Thus, the empirical
guidance suggests that this stretch of levees should have
experienced damage at a magnitude that is not consistent with
the lidar observations. It is possible, or even likely, that the
complex foreshore and bermed cross-section of these levees is
beyond the applicability range of the empirical methods. It is
noted that the berm reduction coefficient, gb, would need to be
lowered to a value of 0.35 to yield good agreement with the
Boussinesq model predictions. Note that the gb in this case would
need to take into account the channel bank breaking, which in this
case acts similar to a reef break, with strong localized breaking.
7. Integrated overtopping volumes over the MRGO levees

While the Boussinesq simulations already presented do
provide insight into the processes that occurred during hurricane
Katrina, because there is no lowering of the levee crest elevations
due to erosion, they represent a lower limit estimate of the
flooding rate. In reality, as the levee crests scoured down, the
overtopping volume would have increased. To gage this crest
lowering impact, additional analysis is needed.

It is desired to not run many Boussinesq simulations for
various crest elevations; this is not an efficient use of the
computationally expensive model. Instead, a semi-empirical
approach will be employed with the existing Boussinesq model
output presented in the previous section. The aim of this analysis
will be to provide an estimate of the total overtopping volume
along the entire length of the east-facing MRGO levees. To
accomplish this, two primary assumptions will be used:

(1) The integrated MRGO overtopping volume will be domi-
nated by the large overtopping rates; wave overtopping with
relatively large freeboard can be neglected here.

(2) At a given time, the spatial variation of wave properties
along the MRGO is weak, and the overtopping rate can be directly
correlated to the freeboard. The wave dependence on the
overtopping rate will be hidden within curve-fit coefficients,
which will only be applicable to this site for this event.
The validity of assumption (2) can be argued through Fig. 20. In
this figure, the Boussinesq-predicted overtopping rates from all
simulated times are plotted as a function of the negative of the
still water freeboard, hs � hc . In addition to the data points are
three curve fit lines, two for a surge level below the crest and a
third for the surge level above. These functions are

q� 0 for ðhs � hcÞo � 0:75 m

q¼ 0:17ðhc � hsÞþ0:13 for � 0:75 moðhs � hcÞr0

q¼ 0:48
ffiffiffi
g
p
ðhs � hcÞ

1:5
þ0:13 for ðhs � hcÞ40 ð9Þ

where q is in m3 =s=m and ðhs;hcÞ must be in m. The level of
precision and accuracy in the small overtopping curve fit ðhs �

hc o0Þ is low. Note that this ‘‘curve’’ fit is simply a linear
regression through the data. The justification for this minimal
effort is taken from assumption 1); these overtopping rates will
not contribute significantly to the total volume of water
overtopping the MRGO levee system, and so there is not a good
reason to press for a better fitting function. Also note that, in this
small overtopping region, there is significant relative scatter; the
dependence on levee and beach profile geometry and specific wave
conditions on wave-driven overtopping is expected. For, hc � hs40,
the curve fit equation is taken from steady flow (Eq. (5)), with a
slightly smaller leading coefficient and an offset, the 130 l/s/m value,
which is an average value of the wave overtopping on the MRGO
levees when the surge level is equal to the levee crest elevation
ðRc ¼ 0Þ. The smaller leading coefficient could be due to the bottom
roughness effect included in the numerical simulations, or some wave
effect. For the case of Rc ¼ 0, Eq. (9) yields q¼ 130 l=s=m, which
would be case-specific for this study only, representing an average
zero-freeboard overtopping for the hydrodynamic conditions and
cross sections examined here.

Now, with the Boussinesq-based MRGO overtopping Eq. (9) it is
possible to estimate the total overtopping rate, Q, integrated spatially
along the entire length of the east-facing MRGO levees. Estimates
such as these are very useful for drainage and interior hydrology
studies. Three different Q’s will be determined: one using the pre-
Katrina levee crest elevations, one using the post-Katrina levee
elevations, and a third using time-variable crest elevations. The first
two estimates provide lower and upper bounds on Q, respectively,
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while the third is meant to represent a more likely rate. For the time-
variable estimate, the levee crest elevations vary linearly from the pre-
Katrina elevation at 1030 UTC to the post-Katrina elevation at
1430 UTC. This is a simplification, and does not attempt to correlate
the rate of change of levee elevation to the local depth of flow over the
crest, as would be physically expected. With the empiricism and
approximations already involved here, the additional complexity of a
nonlinear change in levee crest elevation is not justified.

Fig. 21 shows the three Q values described in the previous
paragraph. The total volumetric rates are tremendously large, and
also vary significantly depending on which levee crest elevations
are used. Maximum integrated overtopping rates of these MRGO
levees likely reached 40 Ml/s/m during the peak of the storm.
8. Conclusions

This paper presents a Boussinesq-based approach for estimat-
ing the overtopping rates along the east-facing MRGO levees
during Hurricane Katrina. For a large fraction of Hurricane Katrina,
the wave and surge conditions near the MRGO levees were outside
the range of applicability of the established empirical overtopping
guidance, and so the Boussinesq model is used as a alternative.
The Boussinesq model is used only very near the levees, with
waves and water levels provided by STWAVE and ADCIRC
simulations performed as part of the IPET effort. In this sense,
the modeling approach is multi-scale, as the ADCIRC grid covers
the entire Gulf of Mexico, yet the detailed hydrodynamics
predicted by the Boussinesq model provides information with a
spatial resolution on the order of a meter and temporal resolution
of a fraction of a second.
Boussinesq simulations are undertaken at four characteristic
transects along the 20 km-long stretch of MRGO levees. These
simulations predict overtopping rates consistent with the observed
damage; where the levees were eroded heavily the Boussinesq model
overtopping estimates are at least an order of magnitude beyond the
threshold for levee damage, while at the location that the Boussinesq
model predicts a relatively low overtopping rate, minimal scour of the
levee crest was found post Katrina.

Finally, the Boussinesq model output was used in a semi-
empirical manner to give overtopping rates for all the MRGO
levees for the duration of Katrina. These Boussinesq-based
overtopping rates provide guidance for combined wave and surge
overtopping rates. Interestingly, the combined rate has a very
similar form to the steady-flow rate, with a slightly different
leading coefficient and an offset equal to the wave-driven
overtopping when the still water surge level is equal to the levee
crest elevation. In conclusion, we have demonstrated a multi-
tiered approach to overtopping estimation; a select few locations
were chosen to perform detailed hydrodynamic simulations of
wave and surge overtopping, and then these results were used to
characterize the entire levee system.
References

ASCE Hurricane Katrina External Review Panel, 2007. The New Orleans Hurricane
Protection System: What Went Wrong and Why. American Society of Civil
Engineers, Reston, Virginia, 92pp.

CEM, Coastal Engineering Manual, 2002. US Army Engineer Research and
Development Center, Vicksburg, MS.

Chen, D., Jirka, G.H., 1995. Experimental study of plane turbulent wakes in a
shallow water. Fluid Dynamics Research 16, 11–41.



ARTICLE IN PRESS

P.J. Lynett et al. / Ocean Engineering 37 (2010) 135–153 153
De Rouck, J., Verhaeghe, H., Geeraerts, J., 2009. Crest level assessment of coastal
structures – General overview. Coastal Engineering 56 (2), 99–107.

Dodd, N., 1998. Numerical model of wave run-up overtopping and regeneration.
ASCE Journal of Waterway, Port, Coastal, and Ocean Engineering 124, 73–81.

Haaland, J., 1983. Simple and explicit formulae for the friction factor in turbulent
pipe flow. Journals of Fluids Engineering 105, 89–90.

Hu, K., Mingham, C.G., Causon, D.M., 2000. Numerical simulation of wave
overtopping of coastal structure using the non-linear shallow water equation.
Coastal Engineering 41, 433–465.

Hubbard, M., Dodd, N., 2002. A 2D numerical model of wave run-up and
overtopping. Coastal Engineering 47, 1–26.

Hughes, S.A., Nadal, N.C., 2009. Laboratory study of combined wave overtopping
and storm surge overflow of a levee. Coastal Engineering 56 (3), 244–259.

Ingram, D.M., Gao, F., Causon, D.M., Mingham, C.G., Troch, P., 2009. Numerical
investigations of wave overtopping at coastal structures. Coastal Engineering.
56 (2), 190–202.

Interagency Performance Evaluation Team, 2006. Final Report. US Army Engineer
Research and Development Center, Vicksburg, MS.

Kim, D.H., Cho, Y.S., Kim, H.J., 2008. Well balanced scheme between flux and source
terms for computation of shallow-water equations over irregular bathymetry.
Journal of Engineering Mechanics 134, 277–290.

Kim, D.-H., Lynett, P.J., Socolofsky, S.A., 2009. A depth-integrated model for weakly
dispersive, turbulent, and rotational fluid flows. Ocean Modelling 27 (3-4),
198–214.

Kobayashi, N., Wurjanto, A., 1989. Wave overtopping on coastal structures. ASCE
Journal of Waterway, Port, Coastal, and Ocean Engineering 115, 235–251.

Li, T., Troch, P., De Rouck, J., 2004. Wave overtopping over a sea dike. Journal of
Computational Physics 198 (2), 686–726.

Liu, P.L.-F., Cho, Y.-S., Briggs, M.J., Kanoglu, U., Synolakis, C.E., 1995. Runup of
solitary waves on a circular island. Journal of Fluid Mechanics 302, 259–285.

Liu, P., Lin, P.Z., Chang, K.A., Sakakiyama, T., 1999. Numerical modelling of wave
interaction with porous structures. ASCE Journal of Waterway, Port, Coastal,
and Ocean Engineering 125 (6), 322–330.

Lynett, P., 2006. Nearshore wave modeling with high-order Boussinesq-type
equations. ASCE Journal of Waterway, Port, Coastal, and Ocean Engineering 132
(5), 348–357.

Lynett, P., Wu, T.-R., Liu, P.L.-F., 2002. Modeling wave runup with depth-integrated
equations. Coastal Engineering 46 (2), 89–107.
Owen, 1980. Design of Seawalls Allowing for Wave Overtopping. Report EX
vol. 924, HR Wallingford.

Powledge, G.R., Ralston, D.C., Miller, P., Chen, Y.H., Clopper, P.E., Temple, D.M., 1989.
Mechanics of overflow erosion and embankments II: hydraulics and design
considerations. Journal of Hydraulic Engineering, ASCE 115 (8), 1056–1075.

Pullen, T., Allsop, N.W.H., Bruce, T., Kortenhaus, A., Schüttrumpf, H., van der Meer,
J.W., 2007. EurOtop: Wave Overtopping of Sea Defences and Related
Structures: Assessment Manual.

Reeve, D.E., Soliman, A., Lin, P.Z., 2008. Numerical study of combined overflow and
wave overtopping over a smooth impermeable seawall. Coastal Engineering 55,
p. 155–166.

Saville, T.J., 1955. Laboratory data on wave run-up and overtopping on shore
structures. Tech. Memo No. 64, U.S. Army, Beach Erosion Board, Document
Service Center, Dayton, Ohio.
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