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Abstract Recent observations of energetic infragravity (IG) flooding events, such as those in the
Philippines during Typhoon Haiyan, suggest that IG surges may approach the coast as breaking bores with
periods of minutes: a very tsunami-like characteristic. Energetic IG waves have been observed in various
locations around the world and have led to loss of lives and damages to property. In this study, a comparison
of overland flow characteristics between tsunamis and energetic IG wave events is presented. In general,
whenever the tsunamis and energetic IG waves have similar runup, tsunamis tend to generate greater flow
depths and longer flood durations than IG. However, flow velocities and Froude number are larger for IG
primarily due to bore-bore capture. This study provides a statistical and physical discriminant between
tsunami and IG, such that in areas exposed to both, a proper interpretation of overland transport, deposition,
and damage is possible.

Plain Language Summary Traditionally, discoveries of sediment layers that are located far away
from the shoreline (>150 m) are usually attributed to tsunami events because it is assumed that wind waves
cannot reach those limits. But, recent observations of energetic infragravity waves (lower frequency than
ordinary waves), such as those in the Philippines during Typhoon Haiyan, have led to an increase in awareness
of such events. Infragravity flooding events, also known as sneaker waves, tend to appear very tsunami-like;
due to the long distance the wave travels inland, inundating the coast. In this study, numerical simulations
were used to estimate flood duration, flow depths, and speeds from potential energetic infragravity waves, and
these were compared with similar values from tsunamis. Our analysis shows that tsunamis tend to flood the
beach for a longer time than infragavity waves. Also, flow depths from tsunamis were larger. Contrarily,
infragravity waves were found to have greater velocities than tsunamis. The purpose of this study is to better
understand the flow properties of tsunami and infragravity, so that a proper interpretation of overland
transport, sediment accumulation, and damage can be achieved in the areas exposed to both events.

1. Introduction

Sediment deposits that are discovered somewhat far-away from the shoreline (>150 m) are usually attributed
to past tsunami events (e.g., Morton et al., 2007; Phantuwongraj & Choowong, 2012). Generally, scientists
assume that wind wave-driven runup cannot reach those limits (e.g., Cox et al., 2018). Furthermore, geologists
characterize deposits based on the hydrodynamic differences between tsunamis and storm, which create
distinctive sedimentary patterns (Mamo et al., 2009; Switzer & Jones, 2008; Tuttle et al., 2004; Watanabe
et al., 2017, 2018). Nevertheless, recent observations of apparent infragravity (IG) dominated flooding during
storm and swell events appear very tsunami-like due to the generated extreme runup (Roeber & Bricker, 2015).
Recently, Dewey and Ryan (2017) discovered that the boulderite deposits in the northwest of Ireland were
created by storm waves and not a tsunami. In the winter of 2013–2014 storms transported boulders, weighing
more than 45 metric ton, to inland distances of 222 m (Cox et al., 2018; Kennedy et al., 2017). Also, storm surge
from typhoon Haiyan deposited boulders on the reef flat and a sand sheet reaching about 300 m inland (Soria
et al., 2018). These observations indicate that there is a possibility for some of the relict deposits cited above
to be attributed to wind wave events. The differences in overland flow dynamics between tsunamis and ener-
getic IG waves have not been studied, hence increasing the difficulty when distinguishing between the two
events from an overland flow perspective. Also, the mechanism of large IG runup is poorly understood
making it difficult to determine when/where IG events could be generated. Two primary considerations in
areas that are prone to both large IG and large tsunami events are as follows: (1) how do the onshore hazards
themselves compare and (2) can the IG and tsunami deposits be distinguished from one another?
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Long waves, such as IG waves, tend to go unnoticed to human perception. Therefore, for many years there
was little knowledge of IG waves since no research was conducted to study such events. In the mid-1900’s
Munk and Tucker made groundbreaking discoveries about IG waves (Munk, 1949; Tucker, 1950). IG waves
(60–300 s) are waves with higher periods than surface gravity waves (2–20 s) but lower periods than tsunamis
(600–6,000 s). IG waves are generated through nonlinear interactions and unsteady wave setup (Biesel, 1952;
Gallagher, 1971; Phillips, 1960; Young & Eldeberky, 1998). Large wind wave runup events are influenced by IG
waves, local resonance of IG waves, three-wave interactions, bore-bore capture, and the local beach profile
(García-Medina et al., 2017; Roeber & Bricker, 2015; Sheremet et al., 2014; Shimozono et al., 2015).

Generation mechanisms for tsunamis have been studied for decades and are well understood (Kanamori,
1972). Tsunamis can be triggered by earthquakes (Okal & Borrero, 2011), landslides (Fritz et al., 2009), volcanic
eruptions (McCoy & Heiken, 2000), or meteor impacts (Weiss et al., 2015). By analyzing the wave height, flow
dynamics, runup, and flooding characteristics of a tsunami, sediment deposits can be assigned to a tsunami
event given their sedimentary patterns and characteristics (Chagué-Goff et al., 2011, 2015; Goff et al., 2012;
Szczuciński et al., 2012). Overland flow behavior of tsunamis has been studied (Kriebel et al., 2017; Lynett,
2016; Lynett et al., 2017; Montoya et al., 2017; Park et al., 2013), but little research has been done comparing
the overland flow dynamics of both tsunamis and energetic IG wave events.

Tsunamis and energetic IG waves pose a hazard to coastal communities. Both phenomena can be associated
with loss of lives, injuries, and coastal damage. Accurate deposit characterization is essential to the develop-
ment of reliable local databases of past flooding events. In this study we analyze the differences in overland
flow behavior of tsunamis and energetic IG waves using a state of the art Boussinesq numerical model. By
better understanding the differences in flow behavior between tsunamis and energetic IG waves, more accu-
rate sedimentological studies and deposit characterization can be developed by geologists.

2. Methods
2.1. Field Observations

On 8 November 2013 Typhoon Haiyan generated large surge and waves and devastated, among many
others, the coastal town of Hernani in the Philippines (Nobuoka et al., 2014). Typhoon Haiyan killed more than
6,300 people and injured more than 28,689 in the Philippines (Lagmay et al., 2014). In Hernani, deposits of
sand were found ~300 m inland after the storm (Soria et al., 2018). Since Hernani is protected by an extensive
fringing reef, a hazard reduction from the storm was expected (Ferrario et al., 2014). During the typhoon, sev-
eral extreme IG waves or tsunami-like waves were generated and struck the coastal town (Roeber & Bricker,
2015). Video recording of one of the extreme IG waves shows that in a matter of seconds a house, located
about 3 m above mean sea level (Roeber & Bricker, 2015), is washed away. This documented event has been
very useful in the study of these types of phenomena and is used in the present study to test the
hypothesis postulated.

Another IG event took place near Half Moon Bay, California, USA, during a surf competition on 13 February
2010. Spectators were enjoying a sunny day when suddenly an extreme IG wave washed away several people
causing injuries to 13 of them (The Times, 2011). In Oregon’s past storm seasons, more than 21 people have
died since 1990 due to sneaker (IG) waves (The Oregonian, 2016). Recently several people have died in Cabo
San Lucas, Mexico, when they were dragged out to sea by an extreme IG wave during a sunny day walking at
the beach (Chicago Tribune, 2017). From these events it has become clear that extreme IG waves often occur
during stormy conditions, but not always.

2.2. Tsunami and IG Modeling

The Cornell University Long Wave (COULWAVE) model is used in this study because of its capabilities in
predicting the dynamics and formation of IG waves and runup. COULWAVE is a Boussinesq-based numerical

model (Kim et al., 2009; Lynett & Liu, 2002) able to simulate wave propagation from deep water (wavelengthdepth ≥2)
to the shoreline with high accuracy (Wei et al., 1995). COULWAVE has been validated, and it has been used for
a wide range of applications such as wave runup, propagation, inundation, wave breaking, tsunamis, currents
in ports and harbors, and hurricane waves (Lovolt et al., 2013; Lynett, 2007; Lynett et al., 2014; Parsons et al.,
2014, among others). This model solves the fully nonlinearly, weakly dispersive wave equations given in the
one-dimensional conservative form as
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Ht þ U∝Hð Þx þ Dc ¼ 0 (1)

U∝Hð Þt þ U2
∝H

� �
x þ gHζ x þ gHDx � U∝D

c ¼ 0 (2)

where H = ζ + h is the total water depth, U∝ denotes the velocity at a refer-
ence elevation z∝, D

x is the second-order terms of the depth-integrated
momentum equation and averaged velocities, and Dc includes the
second-order terms of the continuity equation. A spatially constant bot-
tom friction of f = 0.0035 was used with a quadratic bottom friction law
for the model simulations.

A fully nonlinear Boussinesq model is used for several reasons. As the
waves propagate onto the surf zone and reef, they undergo important
transformations due to nonlinear shoaling, reflection, breaking, and
wave-wave interactions. The surf zone is an area with strong nonlinearities,
and the wave height to water depth ratios during these processes can be
unsuitable for weakly nonlinear Boussinesq models (Shi et al., 2012; Wei

et al., 1995). For more reliable model estimates (wave height, runup, etc.) high-order interactions should be
incorporated due to the strong nonlinearities found in the surf zone (de Bakker et al., 2015; Nwogu, 1993;
Thomson et al., 2006).

For the generation of energetic IG waves an internal-domain wave-maker is used in COULWAVE, driven by a
Joint North Sea Wave Project (JONSWAP) input spectrum. A JONSWAP spectrum is used as it is capable of
representing tropical cyclone waves (Hwang et al., 2017; Ochi & Chiu, 1982; Young, 2017). A wall is located
at the right boundary and a sponge layer at the left boundary. A grid resolution of 2 m is used for all the simu-
lations. The tsunamis are modeled as a single symmetric amplitude dipole. A grid resolution of 20 m is used
for all tsunami simulations. The rest of the parameters from COULWAVE were kept the same as in the IG
wave simulations.

For the IG simulations, the incident shortwave condition is discretized with a very small frequency resolution
(10�4 Hz). Different configurations of significant wave heights (Hs = 3 to 12 m) and peak periods (Tp = 13 to
22 s) were tested (total of 100 configurations). Each configuration was simulated 10 times and had a unique
random phase seed yielding a different deterministic representation of the input wave energy spectrum.
After simulatingmore than amillion waves, only five extreme IG runup events were detected (generatedwhen
Hs > 11 m and TP > 20 s). An extreme or very rare IG runup is defined here as a runup elevation that is 5 stan-
dard deviations above themean or a 5-sigma event. The combination of waves with Hs> 11m and Tp> 20 s is
not very common but has been observed in tropical cyclones (Bowyer & MacAfee, 2005; MacAfee & Bowyer,
2005), big swell events, and storm events in northwest Europe (Gallagher et al., 2016; Masselink et al., 2016).

Two different profiles (planar beach and reef case) are used to study the overland flow dynamics of both tsu-
namis and IG waves (Figure 1). As was previously mentioned, tsunamis are modeled as a single symmetric
amplitude dipole with both a leading and following depression. The period of the tsunamis tested in this
study, defined as two times the duration between the peak of the crest and minimum of the trough, range
from 6 to 22 min. To make a valid comparison between the tsunami and extreme IG event, two different
control criteria were used: maximum runup elevation and maximum offshore crest elevation. For the first
criterion, where the maximum runup elevation for both the tsunami and IG are equal, different offshore
tsunami amplitudes had to be tested until we found a tsunami with the same runup as the extreme IG event.
Alternatively, whenmatchingmaximum offshore crest elevation, tsunami simulations were initialized with an
offshore (at 100-m depth) crest elevation equal to the offshore wind wave amplitude that produced the
extreme runup in the IG simulation.

3. Results and Discussion

Figure 2a shows the 100-m depth ocean surface elevation time series (x = 750 m) for the IG reef case simula-
tion. Only one out of the five extreme events is used in this analysis as all have similar runup elevations and
overland flow behavior. The wave parameters for the input spectrum that generated this extreme are
Hs = 11 m and Tp = 21 s. The maximum runup elevation generated for the reef bathymetry is 8.05 m with

Figure 1. Transects used for Cornell University Long Wave (COULWAVE) tsu-
nami and infragravity simulations, (a) Reef case and (b) planar beach case. A
sponge layer and a wall are used at the left and right boundary, respectively.
A 1/250 reef profile is used to represent a generic, shelf/reef coastal profile.
This is a very mild reef slope and effectively flat for the incoming waves.
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a dominant runup period of about 650 s (Figure 2b). Dominant runup period is defined in this study as the
approximate time in between runup peaks. A spectrum of low-frequency runup height oscillations can also
be observed in Figure 2b. Themaximumwave crest height of the incident wave train that generated themax-
imum runup is 11.37m. For the planar beach case, a slope of 1/35 is used since it represents the average slope
of the entire reef configuration. For the planar beach, the maximum runup is 11.76 m and a dominant runup
period of about 200 s (not shown). To match the maximum tsunami runup elevation with the IG event runup,
offshore tsunami crest heights (at 100-m depth) ranging from 4.2 to 5 and from 3.2 to 4 m are used for the
reef configuration and the planar beach, accordingly. The tsunami height changes depending on the tsunami
period and whether there is a leading or following trough.

Figure 2c presents a frequency spectrum across the reef for the IG wind wave simulation. It shows that the
offshore incident waves break just before the reef at x = 2,000 m. A preliminary analysis of the generation
mechanisms of large IG runup shows that two or more sets/envelopes of highly nonlinear waves, with parti-
cular characteristics (envelope duration, mean crest height, Ursell number, etc …), are needed to generate
extreme runup events. The IG energy arises through nonlinear interactions within the wave spectrum; it is
released as free wave energy as the wave breaks, and the reef/beach is selectively excited with IG energy

Figure 2. (a) Offshore (x = 750 m) free surface elevations and (b) runup time series for the infragravity (IG) configuration
that generated an extreme runup event (reef case). A maximum runup elevation of 8.05 m and a dominant runup
period of about 650 s were predicted by Cornell University Long Wave (COULWAVE). Frequency spectrum of water surface
elevation along the one-dimensional reef transect from COULWAVE IG simulations (reef case): (c) Plot for a broad frequency
range and (d) zoomed in on IG frequencies.
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at the resonant modes (Figure 2d). If the bathymetry is modified, it would change the nonlinear transfers, the
breakpoint, and the resonant modes, having a strong effect on which incident wave sets might lead to very
large runup events. This topic requires further investigation beyond the scope of this paper.

To better understand the overland flow dynamics between tsunamis and IG waves, this study presents com-
parisons of flood duration, flow depth, maximum overland flow velocity, and Froude number (Fr). Maximum
velocities are calculated using a 0.3-m depth threshold in order to reduce the relevance of very thin, but fast
moving flows. Measurements are compared at four different profile elevations for the reef configuration (0, 2,
4, and 6 m) and six elevations for the planar beach configuration (0, 2, 4, 6, 8, and 10 m). Figure 3a shows that
for the reef configuration, the ground was usually flooded longer during the tsunami event for the tsunami
periods tested, as compared to the IG event flood duration. However, flood durations are very similar for both
mechanisms when the tsunami has a period of 6 min. For the planar beach, Figure 3b shows that flood dura-
tion is greater for tsunami waves than IG for all tsunami periods. Also, comparable to the reef, both events
tend to yield similar flood durations for small tsunami periods (<6 min). There is little difference in the results
when there is a leading depression first in the tsunami. Overall, tsunamis tend to flood the entire profile for a
longer time in both model configurations.

For the reef, Figure 3c shows that tsunami and energetic IG flow depths are very similar for tsunami periods
comparable to the IG dominant runup period (~11 min). When the tsunami period is greater than the IG
dominant period, the tsunami flow depths tend to be larger. Also, tsunami flow depths are found to be
greater than IG flow depths at the upper beach (6-m elevation) for all tsunami periods. Figure 3d shows

Figure 3. Comparison of flood duration and flow depths between infragravity (IG) and tsunami for the (a and c) reef case
and (b and d) planar beach case. Leading crest and leading depression tsunami predictions, for a period of 6 min, are
presented with a circle and a black cross, respectively. Tsunami period of 11 min are presented with a square (leading crest)
and a red cross (leading depression). Tsunami period of 22 min are presented with a diamond (leading crest) and a blue
cross (leading depression).
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that for the planar beach, tsunami flow depths are usually greater than IG flow depths. When the tsunami
period is 6 min, flow depths from both events are almost the same. Generally, tsunamis tend to have a
greater flow depth throughout the entire profile in both configurations; however, when the IG dominant
runup period and tsunami period are similar, their flow depths are similar.

Figure 4a shows that for the reef, IG maximum flow speeds are higher than tsunami flow speeds throughout
the beach profile, except at the shoreline when tsunami period is 6 min. A similar behavior is observed for the
Fr (Figure 4c). Away from the immediate shoreline, the maximum Fr is always greater for the energetic IG
event. Finally, for the planar beach, IG flow velocities and Fr were much larger than tsunami flow speeds as
shown in Figures 4b and 4d. Regardless of the tsunami period, the Fr for IG is always higher, and for some
locations approaches a value of 5. As the waves travel to the beach they have a Fr of less than 1, but as they
begin to break near the beach the Fr gets close to 1 and in some instances greater than 1 after breaking. In
order for the Fr to be greater than 1 after the waves break there has to be an increase in the flow at low
depths. This happens with bore-bore capture, that is, as a bore collapses on the beach the transferred
momentum increases the velocities at low depths (García-Medina et al., 2017). Therefore, bore renewal with
bore-bore capture contributes to these larger flow speeds and increases the Fr. Energetic IG shows greater
speeds and Fr with smaller depths in both configurations tested.

To further investigate the overland flow behavior of these two flooding mechanism, a second control criter-
ion is used in which the same maximum offshore wave crest height from the IG simulations is used for the
tsunami simulations. An offshore wave crest height of 11.37 m for the tsunami is adopted, as previously

Figure 4. Comparison of flow speeds and Froude number between infragravity (IG) and tsunami for the (a and c) reef case
and planar (b and d) beach case. Leading crest and leading depression tsunami predictions, for a period of 6 min, are
presented with a circle and a black cross, respectively. Tsunami period of 11 min are presented with a square (leading crest)
and a red cross (leading trough). Tsunami period of 22 min are presented with a diamond (leading crest) and a blue cross
(leading trough).
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mentioned. It is important to note that the tsunami runup is much larger than the IG runup (~20 m versus
~9 m). For this comparison, only results from the reef are presented as very similar results are obtained for
the planar beach. Figure 5a shows that for tsunami periods less than the dominant runup period, tsunami
velocities are larger than IG velocities. As tsunami period increases, the velocities decrease throughout the
beach profile. Fr is greater across the profile for the tsunamis, except at 2- to 4-m elevation, when the
tsunami period is less than the IG runup dominant period as shown in Figure 5b. When the tsunami period
increases, Fr is greater for IG everywhere along the profile except at the shoreline. It is worthwhile to
reiterate that for this offshore-amplitude-match scenario, where the maximum tsunami runup elevation is
much greater than the IG runup, there are still locations along the beach profile where the extreme IG
flooding leads to larger maximum fluid speeds and larger maximum Froude numbers.

4. Conclusions

Extreme IG-driven runup events can appear tsunami-like and, for the wave conditions prescribed herein, can
lead to runup elevations in excess of 10 m above storm water level. In general, whenever the tsunamis and
energetic IG waves have similar runup it is determined that tsunami flow depths and flood durations are
greater. On the other hand, the maximum IG flow speeds are greater in most of the cases, particularly when
tsunamis have a long period (>6 min). Also, IG maximum Fr is greater than the tsunami maximum Fr in the
majority of cases. For the IG simulations, the large Fr appears to be generated by bore-bore capture.
Furthermore, when tsunami runup is much larger than IG runup (with matching maximum incident offshore
crest heights) the IG speeds can be greater when tsunami periods are greater than the dominant IG period.
Tsunamis and energetic IG of similar amplitude/period lead to differences in flow properties, and it is conse-
quently expected that these differences influence the resulting sedimentology.

There are several challenges that exist in order to discriminate tsunami events from extreme IG events. First is
the lack of identified extreme IG deposits. Furthermore, for coastal areas that are prone to both large tsunamis
and large wind wave events, the local statistics of extreme IG/wind wave runup needs to be analyzed and
understood. The periods at which the local beach excite or trap IG energy needs to be investigated since the
longer the IG period, the further onshore the water can travel. Also, the return periods of tsunamis and large
windwave runup need to be compared at hazard levels of interest. Areas where the return periods are not com-
parable could be used to identify where deposits, boulders, and design hazards can bemore reliably attributed.
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Erratum

In the originally published version of this article, there was an error in the fourth paragraph of section 2.2,
“Tsunami and IG Modeling.” The first sentence of this paragraph, “For the IG simulations, the incident short-
wave condition is discretized with a very small frequency resolution (10�5 Hz),” should have read “For the IG
simulations, the incident shortwave condition is discretized with a very small frequency resolution (10�4 Hz).”
This error has since been corrected, and this version may be considered the authoritative version of record
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