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Abstract

A set of model equations for water wave propagation is derived by piecewise integration of the primitive equations of

motion through N arbitrary layers. Within each layer, an independent velocity profile is determined. Depth-averaged and

‘‘extended’’ versions of the multi-layer model are presented and compared. With N separate velocity profiles, matched at the

interfaces of the layers, the resulting set of ‘‘extended’’ equations have 2N� 1 free parameters, while the depth-averaged

equations have N� 1. A linear optimization is performed, showing that increasing the number of layers leads to better deep-

water wave behavior.
D 2004 Elsevier B.V. All rights reserved.
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1. Introduction For example, the equations of Madsen and Sorensen
Since the works of Madsen and Sorensen (1992)

and Nwogu (1993), much of the developments in

Boussinesq-type modeling have focused on extending

the applicability of depth-integrated equations into

deep water. Fundamentally, this extension is contrary

to the physical basis on which one derives said

equations. Boussinesq and Boussinesq-type models

are typically based on a shallow-water scaling, and

utilize an expansion in l = kh, requiring that l is

small. After the derivation is complete, this physical

basis for derivation is in some part disregarded, and

the model equations are applied to waves with l >1.
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and Nwogu have good linear accuracy up to l = 3,

although nonlinear accuracy has very large errors

outside of shallow water (l>1). This choice to apply

the Boussinesq-type models into intermediate and

deep water, made by researchers over a decade ago,

has led to a growing pool of accomplishments.

Included in these accomplishments are the works

of Liu (1994) and Wei et al. (1995) who extended

Nwogu’s approach to highly nonlinear waves. This

led to models that not only can be applied to

intermediate water depth but also are capable of

simulating wave propagation with strong nonlinear

interaction. However, the nonlinear accuracy of these

equations was still substantially less than the linear

accuracy. Further enhancing the deep water applica-

bility of the depth-integrated approach is the high-

order Boussinesq-type equations. While the model
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equations described previously use a quadratic poly-

nomial approximation for the vertical flow distribu-

tion, these high-order models use fourth- and even

higher-order polynomial approximations. Gobbi et al.

(2000), using a fourth-order polynomial, developed a

model with excellent linear dispersive properties up

to lc 6. Nonlinear behavior was faithfully captured

to lc 3.

Madsen et al. (2002) developed a Boussinesq-type

model, based on the method of Agnon et al. (1999),

accurate to extremely deep water (lc 40). Their

derivation, fundamentally different from the one pre-

sented in this paper, involves optimal expansions of

the Laplace equation, allowing for excellent deep

water linear and nonlinear dispersive properties of

the resulting model. By using multiple expansions at

various levels in the water column, the deep water

accuracy is achieved while only requiring the fifth-

order spatial derivatives found in alternative high-

order models with much smaller deep water limita-

tions. However, Madsen et al.’s model consists of

more equations than the alternative high-order mod-

els, such as Gobbi et al. (2000), and thus more

unknowns. Madsen et al. (2003) also presented a

truncated version of the Madsen et al. (2002) model,

whereby the maximum order of spatial differentiation

was reduced to three, and both linear and nonlinear

properties were accurate to lc 10.

However, all of these models employ expansions

in l and thus are still governed by the theoretical

restrictions of the derivation, l < 1. On the other

hand, these models have shown extensively that they

are excellent prediction tools for a variety of non-

linear and deep water problems (e.g. Madsen and

Schäffer, 1998; Gobbi and Kirby, 1999; Madsen et

al., 2002). We need to expect some finite, although

possibly very small, error in the description of wave

physics for l>1 in Boussinesq-type models, due to

the small l expansions employed. However, we can

readily anticipate excellent leading-order behavior up

to the ‘‘practical’’ limit of accuracy for a given set of

equations, i.e. lc 3 for Nwogu’s model, lc 6 for

Gobbi et al.’s model, or lc 40 for Madsen et al.’s

(2002) model.

Boussinesq-type modeling is founded in pragma-

tism; the clear and rigid fundamental limitation of the

model is ignored because it is known from experience

that the model yields excellent predictions beyond.
This pragmatism begins to fade as the high-order

models are examined. For example, the numerical

scheme presented in Gobbi and Kirby (1999) to solve

the model of Gobbi et al. (2000) is very lengthy,

requiring the evaluation of many derivatives to an

accuracy up to fifth-order. Numerical implementation

of this equation system in two-horizontal dimensions

would appear to be a difficult task, although certainly

possible.

In this paper, a different approach to obtaining a

high-order, depth-integrated model is taken. Instead

of employing a high-order polynomial approximation

for the vertical distribution of the flow field, N

quadratic polynomials are used, matched at an inter-

face that divides the water column into N layers.

This approach leads to a set of model equations

without the high-order spatial derivatives associated

with high-order polynomial approximations. The

multi-layer concept has been attempted previously

by Kanayama et al. (1998), although the derivation

and final model equations are quite different from

those to be presented here. As mentioned above,

Madsen et al.’s (2002) model consists of more

equations than the alternative high-order models,

although it is accurate into much deeper water than

other models with the same order of derivatives. This

is quite similar to the basic idea of the multi-layer

derivation presented here: to trade fewer unknowns

and higher spatial derivatives for more unknowns

and lower spatial derivatives.

In the first section of this paper, the derivation of

the multi-layer, depth-integrated model is presented.

Analysis of the model follows, including examination

of linear dispersion properties and kinematics. These

properties are optimized, based on agreements with

linear wave theories, and it is shown that the multi-

layer model is accurate into deep water. The multi-

layer equation system exhibits improvement over

existing models with third-order derivatives, and can

be modeled with existing numerical schemes, in both

1HD and 2HD.
2. Governing equations and boundary conditions

The goal of this derivation is to formulate a set of

equations by integrating the primitive equations of

motion. The integration will be performed piece-



Fig. 1. N-Layer problem setup.
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wisely. Note that the derivation for the specific case of

the two-layer model is presented in Lynett and Liu

(2004), whereas the derivation presented in this sec-

tion is the general N-layer derivation.

As shown in Fig. 1, fV(x V, y V, t V) denotes the

free surface displacement of a wave train propagat-

ing in the water depth hV(x V, y V, t V). The boundary

between layers are given as gnV(x V, y V, t V). The

system will be divided into N layers, where the

upper and lower boundaries are given by gVo = fV
and gVN =� hV, respectively. All of the other bound-

aries will be constructed as gnV = bnhV, where bn is

arbitrary and user defined. Note that hV is a function

of time, and therefore so is gnV. Each of the N layers

has a characteristic thickness, dn, as defined by Fig.

1. Utilizing the layer thicknesses dn as the vertical

length scales in the corresponding layers, ho as the

characteristic water depth, the characteristic length of

the wave S o ¼ 1=k as the horizontal length scale,

S o=
ffiffiffiffiffiffiffi
gho

p
as the time scale, and the characteristic
wave amplitude ao as the scale of wave motion, we

can define the following dimensionless variables:

ðx; yÞ ¼ ðxV; yVÞ=S o; zn ¼ zV=dn; t ¼
ffiffiffiffiffiffiffi
gho

p
tV=S o;

pn ¼ pnV=qgao h ¼ hV=ho;

f ¼ fV=ao; gn ¼ gnV=bn ðUn;VnÞ
¼ ðUnV;VnVÞ=ðeo

ffiffiffiffiffiffiffi
gho

p
Þ; Wn ¼ WnV=½eolo

ffiffiffiffiffiffiffi
gho

p
�
ð1Þ

in which the subscript n indicates the layer index,

bo = ao, bn =Sm = 1
n dm for n = 1 to N, (Un, Vn) repre-

sents the z-dependent horizontal velocity components

in the different layers, Wn the z-dependent vertical

velocity component in the layers, and pn the pres-

sures. Note that the subscript on z indicates that the

vertical coordinate is scaled differently in each layer.

Dimensionless parameters have been introduced in

scale, which are

eo ¼ ao=ho; lo ¼ ho=S o ð2Þ
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It is reiterated that S o ¼ 1=k , and thus lo = kho.

Assuming that the viscous effects are insignificant, the

wave motion can be described by the continuity

equation and the Euler’s equations, i.e.

dn

ho
j � Un þ

BWn

Bzn
¼ 0 ð3Þ

BUn

Bt
þ eoUn �jUn þ enWn

BUn

Bzn
¼ �jpn ð4Þ

l2
n

BWn

Bt
þ eoUn �jWn

� �
þ eol

2
oWn

BWn

Bzn

¼ � Bpn

Bzn
þ 1

en

� �
ð5Þ

where ln = dnho/lo
2, en = ao/dn, Un=(Un, Vn) denotes the

vertically dependent horizontal velocity vector, and

j=(B/Bx, B/By) the horizontal gradient vector.

On the free surface, z1 = e1f(x, y, t) the usual

kinematic and dynamic boundary condition applies:

W1 ¼
Bf
Bt

þ eoU1 �jf on z1 ¼ e1f ð6Þ

p1 ¼ 0 on z1 ¼ e1f ð7Þ

Along the seafloor, zN=� (ho/dN)h, the kinematic

boundary condition requires

WN þ UN �jhþ 1

eo

Bh

Bt
¼ 0; on zN ¼ � ho

dN
h

ð8Þ

At the imaginary interface between the layers,

continuity of pressure and velocity is required:

pn ¼ pnþ1; on zn ¼
bn

dn
gn;

znþ1 ¼
bn

dnþ1

gn for n ¼ 1 to N � 1 ð9Þ

Un ¼ Unþ1; on zn ¼
bn

dn
gn;

znþ1 ¼
bn

dnþ1

gn for n ¼ 1 to N � 1 ð10Þ
Wn ¼ Wnþ1; on zn ¼
bn

dn
gn;

znþ1 ¼
bn

dnþ1

gn for n ¼ 1 to N � 1 ð11Þ

For later use, we note here that the depth-integrated

continuity equation can be obtained by integrating Eq.

(3) across each of the layers. After applying the

boundary conditions (Eqs. (10), (11), (6), and (8)),

the resulting equation reads

j �
XN
n¼1

dn

ho

Z bn�1
dn

gn�1

bn
dn

gn

Undz

" #
þ 1

eo

Bh

Bt
þ Bf

Bt
¼ 0

ð12Þ

We remark here that Eq. (12) is exact.
3. Approximate 2HD governing equations

A perturbation analysis will be performed utilizing

the assumption

Oðl2
nÞb1: ð13Þ

Using ln
2 as the small parameter, we can expand

the dimensionless physical variables as power series

of ln
2

f ¼
Xl
M¼0

l2M
n f ½M �; ðf ¼ Un;Wn; f; pnÞ ð14Þ

Furthermore, we will adopt the irrotational as-

sumption, yielding the following conditions

B

Bzn
U½0�

n ¼ 0; ð15Þ

B

Bzn
U½1�

n ¼ jW ½0�
n : ð16Þ

Consequently, from Eq. (15), the leading order

horizontal velocity components are independent of

the vertical coordinate, i.e.,

U½0�
n ¼ U½0�

n ðx; y; tÞ: ð17Þ
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Substituting Eq. (14) into the continuity equation

(3) and the boundary conditions (6) and (8), we collect

the leading order terms as

dn

ho
j � U½0�

n þ BW
½0�
n

Bzn
¼ 0 for n ¼ 1 to N � 1 ð18Þ

W
½0�
1 ¼ Bf

Bt
þ eoU

½0�
1 �jf on z1 ¼ e1f ð19Þ

W
½0�
N þ U

½0�
N �jhþ 1

eo

Bh

Bt
¼ 0 on zN ¼ � ho

dN
h

ð20Þ

Integrating Eq. (18) with respect to zn and using

Eqs. (11) and (20) to determine the integration con-

stants, we obtain the vertical profile of the vertical

velocity components in the layers:

W ½0�
n ¼ �znS

½0�
n � T ½0�

n ð21Þ

where

S½0�n ¼ dn

ho
j �U½0�

n

T ½0�
n ¼

XN�1

m¼n

gm
bm

dmþ1

S
½0�
mþ1 �

bm

dm
S½0�m

� �

þj � ðhU½0�
N Þ þ 1

eo

Bh

Bt
ð22Þ

Similarly, integrating Eq. (16) with respect to z

with information from Eq. (21), we can find the

corresponding vertical profiles of the horizontal ve-

locity components:

U½1�
n ¼ � z2n

2
S½0�n � znjT ½0�

n þ Cnðx; y; tÞ ð23Þ

in which Cn are unknown functions. Up to O(ln
2),

the horizontal velocity components can be ex-

pressed as

Un ¼ U½0�
n ðx; y; tÞ þ l2

nU½1�
n ðx; y; z; tÞ þ Oðl4

nÞ ð24Þ

Now, we can define the horizontal velocity vectors,

un (x, y, jn(x, y, t), t) evaluated at z = jn (x, y, t) as

un ¼ U½0�
n � l2

nfAnjS½0�n þ BnjT ½0�
n þ Cng þ Oðl4

nÞ
ð25Þ
where An = j2n/2 and Bn = jn. The above substitution

follows the method of Nwogu (1993), and leads to an

‘‘extended’’ set of multi-layer equations. One could

also layer-average (Eq. (24)), which would then lead

to the ‘‘conventional’’ set of depth-averaged multi-

layer equations. Layer-averaging (Eq. (24)) yields the

same form as Eq. (25), but with An = 1/6(gn� 1
2 + gn� 1

gn+ gn
2) and Bn = 1/2(gn� 1 + gn). Thus we can con-

tinue the derivation, while keeping in mind it is valid

for both ‘‘extended’’ and depth-averaged approaches.

Subtracting Eq. (25) from Eq. (24), we can express

Un in terms of un as

Un ¼ un � l2
n

z2

2
�An

� �
jSn þ ðz� BnÞjTn

	 


þOðl4
nÞ ð26Þ

where

Sn ¼
dn

ho
j � un

Tn ¼
XN�1

m¼n

gn
bm

dmþ1

Smþ1 �
bm

dm
Sm

� �

þj � ðhuN Þ þ
1

eo

Bh

Bt
ð27Þ

The exact continuity equation (12) can be rewritten

approximately in terms of f and un. Substituting Eq.

(26) into Eq. (12), we obtain

1

eo

Bh

Bt
þ Bf

Bt
þj �

XN
n¼1

bn�1

ho
gn�1 �

bn

ho
gn

� �
un

�j �
XN
n¼1

l2
n

dn

ho

bn�1

dn
gn�1

� �3
� bn

dn
gn

� �3
6

2
64

8><
>:

� bn�1

dn
gn�1 �

bn

dn
gn

� �
An

#
jSn

þ
bn�1

dn
gn�1

� �2
� bn

dn
gn

� �2
2

2
64

� bn�1

dn
gn�1 �

bn

dn
gn

� �
Bn

#
jTn

)
¼ Oðl4

nÞ ð28Þ
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Note that all the dispersive (l) terms disappear for

the depth-averaged formulation; this can also be

shown by substituting the integral definitions of the

depth-averaged velocities into Eq. (12). Eq. (28) is

one of three governing equations for f and un. The

other two equations come from the horizontal mo-

mentum equation (4). However, we must find the

pressure field first. This can be accomplished by

approximating the vertical momentum equation (5) as

Bpn

Bzn
¼ � 1

en
� l2

n

BW
½0�
n

Bt
þ eoU

½0�
n �jW ½0�

n

 !

� l2
0 eoW

½0�
n

BW
½0�
n

Bzn

 !
þ Oðl2

0l
2
n; l

4
nÞ ð29Þ

We can integrate the equation above with respect to

z1 to find the pressure field in the upper layer as

p1 ¼ f � z1

e1

� �
þ l2

1

1

2
ðz21 � e21f

2Þ BS1
Bt

	

þðz1 � e1fÞ
BT1

Bt
þ eo

2
ðz21 � e21f

2Þu1 �jS1

þeoðz1 � e1fÞu1 �jT1




þeol
2
0

1

2
ðe21f

2 � z21ÞS21 þ ðe1f � z1ÞS1T1

	

ð30ÞþOðl2
ol

2
1Þ; g1 < z1 < e1f

To derive the governing equations for u1, we

substitute Eqs. (26) and (30) into Eq. (4), enforce

zero vertical vorticity (see Hsiao and Liu, 2002), and

obtain the following equation,

Bu1

Bt
þ eo

2
jðu1 � u1Þ þjf þ l2

1

B

Bt
fA1jS1

þB1jT1g þ eol
2
1jðB1u1 �jT1 þA1u1 �jS1Þ

þeol
2
o T1jT1 �j f

BT1

BT

� �� �

þe2ol
2
oj fS1T1 �

ho

d1

f2

2

BS1

Bt
� fu1 �jT1

� �

þe2oe1l
2
oj

f2

2
S21 �

ho

d1
u1 �jS1

� �� �
¼ Oðl2

ol
2
1Þ
ð31Þ
It is remarked here that eolo
2 = e1l1

2, and all coef-

ficients are written in terms of lo and eo whenever

possible. Determination of un for n = 2 to N does not

require solving additional momentum equations. With

boundary condition (10) and the known velocity

profiles (Eq. (26)), un can be given as a function of

un� 1:

un þ l2
n An �

bn�1

dn
gn�1

� �2
2

2
64

3
75jSn

8><
>:

þ Bn �
bn�1

dn
gn�1

� �
jTn




¼ un�1 þ l2
n�1 An�1 �

bn�1

dn�1
gn�1

� �2
2

2
64

3
75jSn�1

8><
>:

þ Bn�1 �
bn�1

dn�1

gn�1

� �
jTn�1

)
þ Oðl4

n�1; l
4
nÞ

ð32Þ

Thus, the lower layer velocities can be directly

calculated with knowledge of the upper layer velocity.

Eqs. (28), (31), and (32) are the coupled governing

equations, written in terms of un and f, for highly

nonlinear, dispersive waves. To complete the bound-

ary value problem and solve the above system of

equations, an initial condition for un and f is required,
as are spatial boundary conditions. For a vertical wall,

the stable numerical procedure given by Kirby et al.

(1998), i.e. for a wall with a normal vector in the x-

direction:

un ¼
Bf
Bx

¼ Bvn

Bx
¼ 0 ð33Þ

should be followed.

A question that arises with the use of the matched

velocity profiles in each layer is whether the vertical

velocity gradients are continuous across the layer

boundary, which is not a directly enforced boundary

condition. If the gradients are not continuous, there is

a discontinuity of the nonlinear, vertical transport

terms in the horizontal and vertical Euler’s equations.



P.J. Lynett, P.L.-F. Liu / Coastal Engineering 51 (2004) 439–454 445
Specifically, the discontinuity would arise in the

Wn(BUn/Bzn) term in Eq. (4) and the lo
2Wn(BWn/Bzn)

term in Eq. (5). However, with calculation of these

nonlinear terms using the derived vertical velocity

profiles, Eq. (21), and horizontal velocity profiles, Eq.

(26), it can readily be shown that the discontinuity is

of the truncation error order in the final model, i.e.

BUn zn ¼ bn
dn

gn
� �

Bzn
¼

BUnþ1 znþ1 ¼ bn
dnþ1

gn
� �
Bznþ1

þ Oðl4
n; l

4
nþ1Þ ð34Þ

l2
o

BWn zn ¼ bn
dn

gn
� �
Bzn

¼ l2
o

BWnþ1 znþ1 ¼ bn
dnþ1

gn
� �
Bznþ1

þ Oðl2
ol

2
n; l

2
ol

2
nþ1Þ ð35Þ

Therefore, the discontinuity of the nonlinear,

vertical transport terms will not affect the overall

accuracy of the model. An important consequence of

this statement is that to the derived order of accuracy

of the model all of the individual velocities, un, exist

on the same quadratic velocity profile. It is simple

exercise to explicitly show this; with ln
2 manipula-

tions in Eq. (24), all Un can be reduced to an

identical expression. At this point, the pragmatism

aspect of Boussinesq-type modeling takes over this

paper. It will be shown in the next section that the

multi-layering approach yields significant benefits

beyond the derived order of accuracy of the model,

which has been the focus of Boussinesq-type mod-

eling since Madsen and Sorensen (1992) and Nwogu

(1993).
4. Accuracy of multi-layer model

4.1. Dispersion relation

In this section, the accuracy of the multi-layer

linear dispersion properties, namely phase and group

velocity, will be examined. First, let us define the

arbitrary evaluation levels and the boundary between

the two layers as:

jn ¼ anh; gn ¼ bnh ð36Þ
where the coefficients a and b are arbitrary and to be

defined. The dispersion relation is determined by first

truncating all nonlinear and depth-variable terms from

Eqs. (28), (31), and (32). Then the assumed solution

forms

f ¼ fð0Þeih un ¼ uð0Þ
n eih; ð37Þ

where h = kx�wt, k is the wave number, and w is the

wave frequency, are substituted into the reduced

governing equations. Finding the dispersion relation

follows straightforwardly, although the algebra

becomes tedious as the number of layers increases.

The symbolic math program Mathematica was used to

check all calculations. The dispersion relations for a

number of the models are included in Appendix A,

those not included are extremely lengthy expressions

and can be obtained from the first author.

It should be noted that when analyzing the ‘‘ex-

tended’’ (EXT) form of the multi-layer equations, the

dispersion relation takes the general form:

w2

k2gh
¼ 1þ ðkhÞ2N1 þ . . .þ ðkhÞ2NNN

1þ ðkhÞ2D1 þ . . .þ ðkhÞ2NDN

ð38Þ

where N and D are coefficients which are functions

of the a and b values. Eq. (38) demonstrates that for

the extended form, the maximum powers of kh are

the same in both numerator and denominator, and the

highest of these powers is equal to 2N, where N is

the number of layers used. When looking at the

‘‘depth-averaged’’ (DA) form of the multi-layer

equations, the dispersion relation becomes

w2

k2gh
¼ 1þ ðkhÞ2N1 þ . . .þ ðkhÞ2ðN�1Þ

NN�1

1þ ðkhÞ2D1 þ . . .þ ðkhÞ2NDN

ð39Þ

where N and D are functions of only the b values.

Now the maximum powers of kh in the numerator

and denominator do not match, with the numerator

containing a power of two less. This property

will lead to very different degrees of accuracy

when comparing the extended and conventional

approaches.

Defining a model accuracy, or model error, can be

difficult and often can depend on the specific physical

problem being examined. For this analysis, a repre-



Table 2

Optimization results for depth-averaged multi-layer model

2-L DA 3-L DA 4-L DA 5-L DA

b1 � 0.332 � 0.180 � 0.114 � 0.076

b2 � 0.447 � 0.269 � 0.167

b3 � 0.505 � 0.290

b4 � 0.510

b5

X(kh) 2 3 4 5
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sentation of the overall error including errors in wave

speed and group velocity is sought. The error will be

given by the minimization parameter DLinear:

DLinear ¼
1

2

�

XX
kh¼0:1

Ace � cA
kh

XX
kh¼0:1

AceA
kh

þ

XX
kh¼0:1

Aceg � cgA
kh

XX
kh¼0:1

AcegA
kh

0
BBBB@

1
CCCCA
ð40Þ

where ce and cg
e are the exact linear phase speed and

group velocity, whereas c and cg are the approximate

values taken from the multi-layer model derived here.

The right-hand side is divided by two, so as to

normalize the total error created by the two different

sources. All of the summations are divided by kh so

that errors at low wave numbers are more important

than high wave number errors. The reason for this

weighting is a peculiarity of the optimization: it was

possible to sacrifice low wave number accuracy for

accuracy at higher wave numbers. Accuracy at low

wave numbers is paramount for this shallow water

based model, and hence the weighting. Summations

are started at kh = 0.1 also because of the kh weight-

ing, and the subsequent need to avoid division by

zero. The upper summation limit, kh =X, is deter-

mined such that the minimum DLinear is less than some

threshold. For all of the optimizations presented here,

X is determined such that DLinear lies between 0.001

and 0.002. This small range is used, rather than an

exact number, due to the computational requirements
Table 1

Optimization results for ‘‘extended’’ multi-layer model

1-L EXT 2-L EXT 3-L EXT 4-L EXT

a1 � 0.531 � 0.200 � 0.1050 � 0.0600

b1 � 0.376 � 0.1965 � 0.1125

a2 � 0.680 � 0.3675 � 0.2200

b2 � 0.5550 � 0.3400

a3 � 0.7875 � 0.5165

b3 � 0.7000

a4 � 0.8800

X(kh) 3 6 12 18

Note that the three- and four-layer levels were determined in

increments of 0.0005.
of optimizing the large number of layer models to

high coefficient precision.

Tables 1 and 2 summarize the optimization results

for the EXT and DA models, respectively. Note that

with the use of Eq. (40) and X = 3, the best fit a1 for
the one-layer model is � 0.531, which is the exact

value recommended by Nwogu (1993). Figs. 2 and 3

plot the errors in phase and group velocity for the

various different models.

Perhaps the most striking feature of these plots is

clear in Fig. 3, the phase and group velocity errors

for the DA formulation. While the magnitude of the

errors certainly does decrease with increasing num-

ber of layers, there are reasonably large errors

starting at khc 1 regardless of the number of layers

employed. The phenomenon is due to the properties

of the dispersion relation for the DA formulation,

which simply cannot be manipulated to yield close

agreement with the tanh function for kh >1. The

easiest demonstration of this deficiency is to show

that it is impossible to force the coefficients in the

DA dispersion relation to match a Padè approxima-

tion. Looking back to Eq. (39), the coefficient N1

for the two-layer DA model is � 1/3(b1 + b1
2). The

same-power coefficient in the [2,4] Padè approxi-

mation of tanh(kh)/kh is 2/21. N1 can never be

equal to 2/21 in the real number domain, and thus

it is impossible for the two-layer DA model to

match a Padè approximation. This fact is evidence

that the DA multi-layer formulation will not exhibit

significant practical gains over the single-layer

models.

On the other hand, the EXT formulation shows

great promise of application into very deep water.

From Fig. 2, it can be seen that increasing the number

of layers within the EXT formulation increases the

deep water accuracy significantly, with the four-layer

model exhibiting a 1% phase error at khc 30. Also



Fig. 2. Comparison of wave speed and group velocity for the extended multi-layer model. Curve (1) is the one-layer model of Nwogu, (2) is the

two-layer model, (3) is the three-layer model, and (4) is the four-layer model.
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note that, as is common with Boussinesq-type equa-

tions, the group velocity error is larger than the

celerity error.

At this point in this paper, the DA formulation

will no longer be discussed. Acceptable DA disper-

sion relation accuracy cannot be achieved for kh >1,

and thus further analysis of the DA model is

largely without practical purpose. The small in-

crease in deep water accuracy due to increasing

the number of layers does not justify the additional

computational requirements. From here on, all anal-

ysis will examine the EXT model. As a side note,

due to the fact that there are N same-order

unknowns in the N-layer derivation (i.e. U1
[0],
U2
[0],. . .), the model is particularly flexible in terms

of O(ln
2) substitutions. Therefore, it may be possible

to manipulate the DA formulation in order to

achieve better linear dispersion properties, although

this comes at the cost of altering the fundamental

physics of the derivation.

4.2. Velocity profiles

The vertical profiles of both horizontal and vertical

velocity can be readily obtained from Eqs. (21) and

(26), respectively. Let us define the function fu(z) as

the horizontal velocity, normalized by the velocity at

z= 0, of a monochromatic wave propagating over a



¼ gn�1zzzgn ¼ bnh and n ¼ 1;N ð43Þ

Fig. 3. Comparison of wave speed and group velocity for the depth-averaged multi-layer model. Curve (1) is the one-layer model of Peregrine,

(2) is the two-layer model, (3) is the three-layer model, (4) is the four-layer model, and (5) is the five-layer model.
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constant depth. This function is composed of N

quadratic polynomial elements, given by:

fuðzÞ ¼ fuðgn�1Þ

�
1þ ðkhÞ2 1

2
z2

h2
� a2n

� �
þ an � z

h

" #
Pn

h i
1þ ðkhÞ2 1

2
b2
n�1 � a2n

" #
þ an � bn�1ð ÞPn

& '
for bn�1h ¼ gn�1zzzgn ¼ bnh and n ¼ 1;N ð41Þ

where

Pn ¼ bn �
XN

m¼nþ1

u
ð0Þ
m

u
ð0Þ
n

ðbm�1 � bmÞ ð42Þ
The reader should keep in mind that b0 = 0,

corresponding to the free surface, bN =� 1, cor-

responding to the seafloor, and fu(0) = 1. From the

linear equation systems, after the substitutions of Eq.

(37), there can be derived explicit expressions for un
(0),

and thus the velocity ratios can be evaluated.

Similarly, the vertical velocity profile, normalized

by the velocity at the still water level, is given by fw(z)

fwðzÞ ¼ fwðgn�1Þ
z
h
� Pn

bn�1 � Pn

for bn�1h
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which is a piecewise linear function. Note that, as with

fu, fw(0) = 1.

Figs. 4–7 show the kinematics comparisons for

the one-, two-, three- and four-layer models. Fig. 4

gives the comparisons for kh = p. Even for the one-

layer model, whose practical accuracy has been

demonstrated repeatedly, there are large errors on
Fig. 4. Comparison of vertical profiles of horizontal (left column) and verti

are given by the solid lines and the dashed by the multi-layer theory, wh

second row is the two-layer, the third row is the three-layer, and fourth ro
both the u and w vertical profiles. There is some

small error in the two-layer model, but the three- and

four-layer models predict the vertical profiles to a

very high degree of accuracy. For kh = 2p, shown in

Fig. 5, the two-layer model is still very accurate,

although errors in the w profile are becoming sig-

nificant. Moving into deeper water, Fig. 6, for
cal (right column) velocity for kh= p. The profiles from linear theory

ere the first row is the one-layer (extended Boussinesq) model, the

w is the four-layer.



Fig. 5. Comparison of vertical profiles of horizontal (left column) and vertical (right column) velocity for kh = 2p. Figure setup is the same as in

Fig. 4.
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kh = 4p, illustrates the accuracy of the three- and

four-layer models. Even into extremely deep water,

the four-layer model is more than adequate, as

displayed in Fig. 7 for kh = 8p. Note that presenting

the vertical profiles from the one-layer into this kh

range is done only for consistency among the fig-

ures. While one can use Figs. 4–7 to understand the

vertical flexibility of the various models, the errors

in the magnitude of the velocities must also be
considered, which are similar to the errors in phase

velocity.

4.3. Comparisons with other Boussinesq-type models

As there are a number of high-order, Boussinesq-

like approaches in the published literature, it is im-

portant to discuss how the multi-layer model com-

pares. In an attempt to discriminate the advantages



Fig. 6. Comparison of vertical profiles of horizontal (left column) and vertical (right column) velocity for kh= 4p. Figure setup is the same as in

Fig. 4.
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and disadvantages of the various models, four items

are compared: kh at 1% error in phase speed, number

of equations, number of vector equations, and highest

order of spatial differentiation. These items are given

in Table 3.

All of the values shown in Table 3 are taken

directly from the corresponding papers. For Madsen

et al. (2002), results given above are for their
r =� 0.2 and Eqs. (2), (15), (17, and (22b). For

Madsen et al. (2003), results given above are for

r =� 0.5, given in Table 2 in their appendix. The

equations for Madsen et al. (2003) are similar to

Madsen et al. (2002), except with all derivatives

higher than third-order truncated. The two-layer

model has slightly better linear dispersion accuracy

than Schäffer and Madsen and Gobbi et al., but



Fig. 7. Comparison of vertical profiles of horizontal (left column) and vertical (right column) velocity for kh = 8p. Figure setup is the same as in

Fig. 4.
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slightly worse than Madsen et al. (2003). The

accuracy of the four-layer model is approaching that

of Madsen et al. (2002), but is still substantially

below. The computational requirements of Madsen

et al. (2003) and the four-layer model would prob-

ably be very similar, as they both include only third

order derivatives, and consist of identical numbers

of equations for a 2HD problem. Of course, the
method of numerical solving can greatly affect these

judgements.
5. Conclusions

A model for the transformation of highly disper-

sive waves is derived. The model utilizes N quadratic



Table 3

Comparison of different aspects of the high-order models of

Schäffer and Madsen (1995) with truncation error [O(eolo
2, lo

4)],

Gobbi et al. (2000) [O(lo
6)], Madsen et al. (2002) [O(lo

10)], Madsen

et al. (2003) [O(lo
6)], and the two-, three-, and four-layer model

presented here [O(lo
2l1

2, lN
4)]

Model kh at 1% error in c

Schäffer and Madsen (1995) 6

Gobbi et al. (2000) 6

Madsen et al. (2002) 40

Madsen et al. (2003) 10

Two-layer 8

Three-layer 17

Four-layer 30

Model # of equation [# of vector

equations] (differentiation order)

Schäffer and Madsen (1995) 2 [1] (3)

Gobbi et al. (2000) 2 [1] (5)

Madsen et al. (2002) 6 [3] (5)

Madsen et al. (2003) 6 [3] (3)

Two-layer 3 [2] (3)

Three-layer 4 [3] (3)

Four-layer 5 [4] (3)
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polynomials to approximate the vertical flow field,

matched along an interface. Through optimization of

the interface and velocity evaluation locations, it is

shown that the two-layer model exhibits accurate

characteristics up to a khc 8. The three- and four-

layer models show accuracy into even deeper water,

while also including only third-order spatial deriva-

tives. Owing to this maximum order of differentiation,

a tractable numerical algorithm can be developed for

the general 2HD problem, employing the well-studied

predictor–corrector scheme (e.g. Wei et al., 1995).

The multi-layer model represents an extension of the

practical-oriented Boussinesq developments of a de-

cade ago, allowing for high-order accuracy with a

relatively simple set of 2HD model equations.

To employ the multi-layer model in real world

situations, shoreline conditions and parameterizations

of viscous effects must be included. While implemen-

tations of the existing models, e.g. the roller model for

breaking, can be readily integrated into the multi-layer

framework, it may be possible to enhance these

previous foundations, by, for example, including the

effects of vertically dependent eddy viscosities.

Extensions such as this are currently being explored

within the multi-layer framework.
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Appendix A. Dispersion relation coefficients

The general form of the dispersion relation for the

N-layer model can be given as

w2

k2gh
¼ 1þ ðkhÞ2N1 þ . . .þ ðkhÞ2NNN

1þ ðkhÞ2D1 þ . . .þ ðkhÞ2NDN

: ð44Þ

Where space permits, the function form of the coef-

ficients N and D are given below. Where the expres-

sions are tedious, only the numerical values of the

coefficients are given, using the a and b values

included in Tables 1 and 2.

A.1. EXT Formulation

A.1.1 . One-layer model

N1 =� 1/3� 1/2a1
2� a1

D1 =� 1/2a1
2� a1

A.1.2 . Two-layer model

N1 = d2d7� d1d8� d3� d4
N2 = d3d8� d4d7
D1 =� d8� d5� d6
D2 = d5d8� d6d7

where:
d1 ¼ �b1; d2 ¼ 1þ b1;

d3 ¼
�2b3

1 þ 6a1b
2
1 � 3a21b1

6
;

d4 ¼
2b3

1 � 6a1b
2
1 � 6a1b1 þ 3a22b1 þ 6a2b1 þ 3a22 þ 6a2 þ 2

6
;

d5 ¼
a21
2
� a1b1; d6 ¼ a1b1 þ a1; d7 ¼ � a21 þ b2

1

2
þ a1b1

d8 ¼
b2
1 þ a22
2

� a1b1 þ a2 � a1

A.1.3 . Three-layer model

N1 = 1.223e� 01

N2 = 2.247e� 03

N3 = 3.757e� 06

D1 = 4.557e� 01

D2 = 2.088e� 02
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D3 = 1.393e� 04

A.1.4 . Four-layer model

N1 = 1.341e� 01

N2 = 3.632e� 03

N3 = 2.195e� 05

N4 = 1.180e� 08

D1 = 4.674e� 01

D2 = 2.620e� 02

D3 = 3.510e� 04

D4 = 7.801e� 07

A.2. DA formulation

A.2.1 . One-layer model

N1 = 0

D1 = 1/3

A.2.2 . Two-layer model

N1 =� 1/3(b1 + b1
2)

N2 = 0

D1 = 1/3(1� b1� b1
2)

D2 = 1/36(4b1
2 + 5b1

3 + b1
4)

A.2.3 . Three-layer model

N1 = 9.842e� 02

N2 = 1.030e� 03

N3 = 0

D1 = 4.318e� 01

D2 = 1.391e� 02

D3 = 5.525e� 05

A.2.4 . Four-layer model

N1 = 1.104e� 01

N2 = 1.803e� 03

N3 = 5.256e� 06

N4 = 0

D1 = 4.437e� 01

D2 = 1.776e� 02

D3 = 1.326e� 04

D4 = 1.772e� 07
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