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Abstract A numerical wave tank (NWT) with fully non-
linear free-surface boundary conditions is developed to
investigate nonlinear wave–wave and wave–current
interactions and the resulting kinematics. In the present
paper, the variation of wave amplitude and wave length of
a monochromatic wave under several different speeds of
steady uniform currents is studied through direct
numerical simulations in the time domain. The nonlinear
wave–current interactions are solved using a boundary
integral equation method (BIEM) and a Mixed Eulerian–
Lagrangian (MEL) time marching scheme. Both a semi-
Lagrangian approach and Lagrangian (material-node)
approach are employed and their performance is
compared. A regridding algorithm based on cubic spline
fitting is devised for updating the free-surface moving
boundary in a stable and accurate manner. The incident
waves are generated by feeding prescribed analytical
waves on the input boundary. An efficient artificial
numerical beach is devised and applied to dissipate wave
energy and minimize wave reflections from the down-
stream wall. Nonlinear wave kinematics as a result of
nonlinear wave–current interactions is calculated and the
results are compared with a multi-layer Boussinesq model.
The spatial variation of nonlinear wave profiles and
kinematics affected by currents are also addressed and
discussed.

Keywords Wave-current interaction, Boundary Element
Method, Numerical Wave Tank, Multi-layer Boussinesq
model, Wave mechanics

1
Introduction
Wave-current interactions have been one of the most
interesting, applicable topics in ocean engineering and
physical oceanography. For instance, when ocean waves
enter an inlet against an ebb current, changes of wave
heights and wavelengths occur, which is important to the
design or modification of inlet channels for navigation or
dredging operations [18]. To solve wave–current interac-
tions, Isaacson and Cheung [10], and Kim and Kim [12]
used BEM and perturbation methods for sufficiently small

Froude numbers. On the other hand, Celebi [3] and Celebi
et al. [4] investigated transient and steady-state nonlinear
wave–current-body interactions by a fully nonlinear 3-D
numerical wave tank with a mixed Eulerian–Lagrangian
(MEL) time stepping technique. A material node approach
was used in their numerical scheme for updating the
nonlinear free surface.

Though there are many papers dealing with wave–cur-
rent interactions based on linear or perturbation theories,
for instance the paper of Baddour and Song [1], publica-
tions on fully nonlinear wave–current interactions are
rare. Furthermore, nonlinear wave–current interactions
are very difficult subjects to be studied in the laboratory
because it is not easy to generate a uniform steady current
field with waves. In this paper, fully nonlinear wave–
current interactions, BEM modeling, and the use of a
Lagrangian and regridding scheme is addressed. A number
of difficulties associated with numerical implementations
are discussed. The change of wave amplitudes, shapes, and
wave lengths due to coplanar and opposing uniform cur-
rents is also discussed. The wave induced particle veloci-
ties, particularly the wave kinematics above MWL, are also
obtained. The nonlinear solutions are compared with
those of linear theory.

Both Lagrangian (material-node) and semi-Lagrangian
approaches are independently developed and the results
are cross-checked. Several case studies are carried out to
check the overall performance of the developed BEM and
time-marching scheme. Various interesting features of the
fully nonlinear wave–current interactions can be seen
through those examples. The simulated results are com-
pared with the results of a multi-layer Boussinesq model,
which represents a very different type of model. The two
independent numerical models are in excellent agreement
both in free-surface profiles and kinematics.

2
Mathematical formulation
It is assumed that the fluid is irrotational and inviscid so that
a velocity potential exists in the fluid domain. The domain
and coordinate system are shown in Fig. 1. A Cartesian
coordinate system is employed such that the z ¼ 0 line
corresponds to the still water level, z is positive upwards.
Now the problem to solve is to determine the velocity
potential that satisfies the Laplace equation:

r2/ ¼ 0 in X ð1Þ

where X denotes the fluid domain.
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Given the boundary conditions, the velocity potential /
can be determined by solving the following boundary
integral equation:

1

4p

Z

C

Gðp; qÞ o/ðqÞ
onðqÞ � /ðqÞ oGðp; qÞ

onðqÞ

� �
dCq

¼ CðpÞ/ðpÞ; p 2 C ð2Þ
where C denotes the boundaries, Gðp; qÞ Green function,
CðpÞ the normalized solid angle at a point on the bound-
ary, and p and q the field and source points, respectively.

2.1
The mixed initial boundary value problem
For 2-D surface wave propagation problems with a steady
uniform current parallel to x-direction, the total velocity
potential U can be expressed as

U ¼ U0xþ /ðx; z; tÞ ð3Þ
where U0 is the steady uniform current and /ðx; z; tÞ is the
unsteady wave potential. Both the total and wave poten-
tials satisfy the Laplace equation. For /, the boundary
condition on the right side vertical wall Cr is no-flux
condition. In mathematical expression, we can write

oU
on
¼ U0 þ

o/
on
¼ U0 or

o/
on
¼ 0 on Cr ð4Þ

The transmitted and reflected waves inside the damping
zone should be completely dissipated. To generate a wave
along the input boundary of the NWT, a theoretical fluid
particle velocity is applied as a feeding function. The fluid
in the wave tank is initially at rest and the incident wave is
generated gradually by applying a ramp function to min-
imize the influence of transient long waves. On the input
boundary Cw the boundary condition is

oU
on
¼ � o/w

ox
� U0 or

o/
on
¼ � o/w

ox
on Cw ð5Þ

For the bottom boundary condition, the condition of no
flux through the bottom boundary Cb gives

oU
on
¼ o/b

on
þ 0 or

o/
on
¼ 0 on Cb ð6Þ

In addition, both the kinematic and dynamic free-surface
boundary conditions (FSBCs) must be satisfied on the
instantaneous free surface Cf . The kinematic FSBC

requires that the free-surface velocity should be equal to
the motion of free-surface particles,

Dðz� gÞ
Dt

¼ 0 on Cf ð7Þ

� og
ot
� oU

ox

og
ox
þ oU

oz
¼ 0 ð8Þ

where z ¼ gðx; tÞ is the free-surface elevation. Substituting
Eq. (3) into Eq. (8) yields

� og
ot
� U0 þ

o/
ox

� �
og
ox
þ o/

oz
¼ 0 ð9Þ

og
ot
¼ � o/

ox

og
ox
þ o/

oz
� U0

og
ox

on Cf ð10Þ

In addition to the kinematic FSBC Eq. (10), the dynamic
FSBC requires that the pressure on the free-surface must
be uniform and equal to atmospheric pressure. The Ber-
noulli equation can be applied to describe this boundary
condition,

oU
ot
þ 1

2
rUj j2 þ gg ¼ � Pa

q
ð11Þ

where the atmospheric pressure Pa can be set to zero and

rUj j2 ¼ oU
ox

� �2

þ oU
oz

� �2

¼ o/
ox

� �2

þ o/
oz

� �2

þ 2U0
o/
ox
þ U2

0 ð12Þ

Substituting Eq. (12) into Eq. (11) yields the dynamic
FSBC,

o/
ot
¼ �gg� 1

2

o/
ox

� �2

þ o/
oz

� �2
( )

� U0
o/
ox

on Cf

ð13Þ
To solve this boundary value problem in the time domain,
initial conditions are required, which can be described as:

/ ¼ 0 (in fluid domain, at t ¼ 0Þ ð14Þ
g ¼ 0 (on free surface, at t ¼ 0Þ ð15Þ
When the nonlinear dynamic and kinematic FSBCs, i.e.
Eqs. (10) and (13), are linearized, the corresponding total
potential is given by

Fig. 1. Schematic diagram of
NWT and nodes 337



U ¼ U0xþ gA

x
cosh½kðzþ hÞ�

cosh kh
sinðkx� xtÞ ð16Þ

where k is wave number, g gravitational acceleration, h
water depth, A wave amplitude, and x circular wave
frequency. This formula represents the combined wave
and current field, which is independently generated, then
the dispersion relation can be written as follows

ðx� kU0Þ2 ¼ kg tanh kh ð17Þ
and the corresponding surface elevation is given by

g ¼ A 1� kU0

x

� �
cosðkx� xtÞ ð18Þ

It can be seen that the wave amplitude increases in
opposing current and decreases in coplanar current. On
the other hand, wave length is shortened in opposing
current and lengthened in coplanar current [6].

2.2
Matrix formulation
In this NWT, the constant elements are employed and the
nodes are at the middle of each segment. The discretized
formula based on the constant element method of Eq. (2)
for a given point ‘i’ before applying any boundary condi-
tions is as follows [2],

1

2
ui þ

XN

j¼1

Z

Cj

q� dC

0
B@

1
CAuj ¼

XN

j¼1

Z

Cj

u� dC

0
B@

1
CAqj ð19Þ

Using the symbols ĤHij and Gij for the left and right
integrals in the parentheses, we have

1

2
ui þ

XN

j¼1

ĤHijuj ¼
XN

j¼1

Gijqj ð20Þ

The integrals are calculated by a 4-point Gauss quadrature
method and let Hij as follows

Hij ¼
ĤHij when i 6¼ j

ĤHij þ 1
2 when i ¼ j

�
ð21Þ

The entire set of equations can be expressed in matrix
form as,

HU ¼ GQ ð22Þ
In order to place the unknown and known values of u’s
and q’s on the left and right sides, respectively, the
rearranged equation can be written as

~HH

/w

/b

/r

ð/f Þn

8>><
>>:

9>>=
>>;
¼ ~GG

ð/wÞn
ð/bÞn
ð/rÞn
/f

8>><
>>:

9>>=
>>;

ð23Þ

where matrices ~HH and ~GG are the rearranged matrices by
switching last m columns between H and G, where m is the
total number of nodes on the free-surface, /w, /b, /r , and
/f the potentials on the wavemaker, bottom, right-hand

side wall, and free surface, respectively, as shown in the
Fig. 1. The subscript n represents the normal derivative
and the corresponding initial input boundary conditions
were given in Sect. 3.1. Note that if the potential on the
wavemaker boundary is used, /w and ð/wÞn and the
corresponding columns of H and G should be switched.
However, ð/wÞn resembling ideal flexible wavemaker was
chosen as the input incident wave potential for the NWT
in this study. Finally, we can pass all unknowns to the
left-hand side and write,

X ¼ A�1F ð24Þ
where X is the vector of unknown u’s and q’s,
A�1 ¼ ~HH�1 ~GG, and F the vector of known u’s and q’s.

2.3
FSBCs by Lagrangian or semi-Lagrangian approach
If a Lagrangian approach is applied, the kinematic and
dynamic FSBCs must be described based on the total
derivative. Then, Eqs. (10) and (13) can be changed to the
following forms, respectively,

dg
dt
¼ � r/�~vvð Þ � rgþ o/

oz
� U0

og
ox

on Cf ð25Þ

and

d/
dt
¼ �gg� 1

2

o/
ox

� �2

þ o/
oz

� �2
( )

þ~vv � r/� U0
o/
ox

on Cf ð26Þ

where ~vv is the node velocity and the total derivative

d
dt
� o

ot
þ~vv � r ð27Þ

If the nodal velocity ~vv is moving with time but chosen
other than the fluid particle velocity, it is called semi-
Lagrangian approach. When a semi-Lagrangian approach
is applied in this paper, the node is restricted to move
vertically following the free surface.

In this paper, a material-node approach is employed so
that every individual free-surface node or collocation
point should follow the corresponding individual fluid
particles, i.e. ~vv ¼ rU [3]. Then the position vector of a
fluid particle on the free-surface ~XXf ðtÞ ¼ xf ðtÞ; zf ðtÞ

� �
and

its material derivative are given by

d~XXf ðtÞ
dt

¼~vvð~xx; tÞ ¼ U0
~iiþr/ ð28Þ

Applying Eq. (28) into the FSBCs, Eqs. (25) and (26) yield

Dg
Dt
¼ o/

oz
on Cf ð29Þ

and

D/
Dt
¼ �ggþ 1

2

o/
ox

� �2

þ o/
oz

� �2
( )

on Cf ð30Þ

The material-node Eqs. (29) and (30) become simpler
compared to the semi-Lagrangian Eqs. (25) and (26).
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3
Numerical schemes

3.1
Artificial damping and time marching
At the end of the NWT, an artificial damping zone is
established with extra damping terms on both kinematic
and dynamic free-surface conditions. The effectiveness of
such damping terms is well demonstrated in [13]. Both
leapfrog scheme (LF) and 4th-order Runge–Kutta scheme
(RK4) were used for cross-checking the time marching of
free-surface. For spatial derivatives og=ox and o/f =ox,
both central differencing and analytic differentiation of
cubic spline functions were applied for double checking.

For instance, the difference forms of Eqs. (10) and (13)
based on a semi-Lagrangian approach and the LF in the
artificial damping zone can be written as follows

gkþ1
2 ¼ gk þ Dt

o/k
f

oz
�

o/k
f

ox

ogk

ox
þ U0

ogk

ox
� l2g

k

 !

ð31Þ

/kþ1
f ¼ /k

f þDt �ggkþ1
2 þ 1

2
r/k

f

���
���2 þU0

o/k
f

ox
� l1

o/k
f

oz

 !

ð32Þ
where /f is the free-surface unsteady potential and l1 and
l2 are damping coefficients for the artificial numerical
beach as shown in Fig. 1. Here, if two damping coefficients
are set to zero, then the above two equations become
ordinary FSBCs without any artificial damping.

If a material-node approach is used, Eqs. (31) and (32)
can be rewritten as follows

gkþ1
2 ¼ gk þ Dt

o/k
f

oz
� l2g

k

 !
ð33Þ

/kþ1
f ¼ /k

f þ Dt �ggkþ1
2 þ 1

2
r/k

f

���
���2 � l1

o/k
f

oz

 !
ð34Þ

One of the advantages in the use of Eqs. (33) and (34) is
that there is no convection-like term in the difference
equations, so the numerical implementation is much
simpler. When a semi-Lagrangian approach was used with
current, U0og=ox and U0o/=ox act like damping in x -
direction, and thus special care should be taken to remove
such phenomena. Therefore, in the case of nonlinear
free-surface simulations with current, the material-node
approach is more robust and effective.

3.2
Tracking Lagrangian points
At every time step, the updated location of each point can
be traced by the following formulas:

xkþ1 ¼ xk þ Dt U0 þ
o/k

f

ox

 !
ð35Þ

zkþ1 ¼ gkþ1 ð36Þ

3.3
Special numerical treatments
at free-surface/wavemaker intersection
To generate a wave in this NWT, numerical velocity input
on inflow boundary is applied as a feeding function. The
fluid in the wave tank is initially at rest and the incident
wave is generated gradually by applying a ramp function
to avoid impulsive motion of the first waves.

When the Lagrangian approach is used, it is noted that
the first collocation point x1 on the free-surface close to
the left vertical boundary Cw can cause a numerical
instability problem. Especially, the x-location of the first
collocation point in a coplanar current case could be much
greater than the location of the original position. In that
case, if an extrapolation method is applied to get the
updated values of g and /f as part of regridding proce-
dure, the extrapolated values may not be accurate. To
resolve this problem, the following logical statement was
applied in a computer program.

If x1 >
Dx
2 , where Dx is the size of uniform grid on the

free-surface boundary, the analytic expressions of the
feeding g and /w were used at x ¼ 0 and the corre-
sponding values at x1 were interpolated.

4
Grid generation

4.1
Grid spacing on the input boundary
To investigate the accuracy and efficiency depending on
the total number of nodal points and the nodal spacing at
the vertical boundaries, three mathematical functions are
considered. They are: (1) uniform spacing, (2) hyperbolic
cosine function, and (3) inverse sine function.

Based on several simulations with different spacing
algorithms described above, it is shown that the input
boundary spacing obtained from a hyperbolic cosine
function is superior to other spacing techniques. The
efficiency of the grid spacing can be verified by comparing
those simulation results to a higher order nonlinear wave
theory, for instance 2nd order Stokes waves. In addition, it
is certain that a much finer grid system based on a
hyperbolic function, which is a base function of linear
gravity waves, can represent the rapid change of the
potential values as z gets closer to the free surface.

It may not be easy to directly feed the inflow uniform
current at the input boundary because the length of the
vertical boundary changes with fluctuating free surface.
Therefore, the current field is separated from the unsteady
potential and directly applied to the entire field.

4.2
Regridding
At every time step, in order to keep the original free-
surface grid spacing, a cubic spline function is applied
for interpolation along the free surface. To calculate the
spatial derivative in Eq. (34) with respect to the variable
x, the analytic derivative of the piecewise cubic functions
is applied. The analytic derivative was confirmed by
comparing with central difference scheme.
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4.3
Consideration of grid spacing and time increment
In numerical calculations, grid spacing Dx and time
increment Dt must be chosen to avoid numerical insta-
bility and to achieve desirable accuracy. Dommermuth and
Yue [7] performed a Von Neumann stability analysis for
RK4, with linearized free-surface conditions, and obtained
the following Courant condition

Dt2 � 8

p
Dx

g
ð37Þ

where Dt is the time step, and Dx the local grid spacing.
Although Eq. (37) is a required numerical stability con-
dition for linearized free-surface conditions, we expect

that it should at least be satisfied for nonlinear problems as
well [11]. The regridding was done at every time step. The
regridding technique includes cubic spline interpolation,
and thus additional smoothing is not necessary.

4.4
Lagrangian vs. semi-Lagrangian methods
First, the free-surface simulations without current were
carried out by using both Lagrangian and semi-Lagrangian
approach for cross-checking. In the semi-Lagrangian ap-
proach, the node is forced to move vertically, and thus
regridding is not necessary. It is confirmed as in Fig. 2 that
both methods produce almost the same results. It can also
be noted that the intermediate water waves in Fig. 2 have
nonlinear wave features, i.e. narrower and higher crests
and shallower and wider troughs. The performance of the
present scheme for artificial damping zone appears to be
excellent minimizing wave reflection into the wave field.

5
Case study
Several cases are addressed in this section to better
understand the phenomena of nonlinear wave–current
interactions. First, it is observed as expected that nonlinear
phenomena, such as crest-trough asymmetry, skewness,
secondary peaks etc. are more pronounced when water
depth is shallower and the wave steepness becomes
greater. Secondly, changes of crests, troughs, and wave-
length as a function of current speed are quantitatively
shown. Finally, practical problems that may be difficult to
solve theoretically or by experiments, such as nonlinear

Fig. 2. Comparison of results obtained from a Lagrangian grid
plus regridding (dots) and a semi-Lagrangian grid (solid line).
Linear input values are: wave amplitude A ¼ 0:05 m, wave period
T ¼ 4:17 s, wavelength L ¼ 12:57 m, and water depth h ¼ 1 m
(intermediate water)

Fig. 3. Long range traveling waves show the spatial change of free
surface elevations recorded at x ¼ 100, 145, 150, and 155 m from
the wavemaker, respectively
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wave–current kinematics above mean water level, are
simulated based on the developed NWT.

5.1
Linear wave input with fully nonlinear FSBCs
The free surface elevation is a function of the input wave
feeding function (or wavemaker motion). The cases
examined in this paper are in intermediate water depth
with:

H

gT2
¼ 0:0006 � 0:0012 and

d

gT2
¼ 0:0059 :

Figure 3 shows that when waves are generated in the NWT,
spatial variation of the waveform persists even at large
distances from the wavemaker unless fully nonlinear kine-
matics are fed. The spatial variation is more pronounced
when the mismatch between the fully nonlinear and linear
wave kinematics are larger at the wavemaker boundary.

According to the wave-theory-selection diagram pre-
sented by Le Mehaute [14], the cases examined here are near
overlapped region among several different wave theories.
Cnoidal theory may be a proper choice. The expression for
cnoidal waves is based on KdV-type equations, which do not
have good nonlinear dispersive properties much past kh =
0.1. Therefore, even if cnoidal waveform, which is based on
the incorrect (or approximate) physics of the problem, is
generated in the NWT, it may be similar to the original
problem of putting a linear wave into a nonlinear domain.
Additionally, the cnoidal wave is a weakly nonlinear wave
solution, and will not satisfy the fully nonlinear, fully dis-
persive equations. Therefore, it may be very difficult to put
the ‘‘correct’’ nonlinear wave into the input boundary. Only
if an analytic fully-nonlinear wave solution is inputted
through the wavemaker will a symmetric nonlinear wave
result. A complete nonlinear wave solution for this wave
height and period does not exist in a practically-useful,
closed form. Hence, the linear wave input with fully non-
linear FSBCs, as in the present case, produces asymmetric
and spatially varying waves. The common weakly nonlinear
waves, such as stream-function waves [5], cnoidal waves,
and high-order Stokes waves, which are symmetric locked
waves and do not include nonlinear free waves, may only
slightly improve the situation.

Due to a mismatch between the input wavemaker
motion and the actual kinematics of fully nonlinear waves,
which happens both in physical and numerical wave tanks,
the phenomenon of ‘‘recurring spatial variation of water
waves’’ occurs [9]. The mismatch at the wave-maker
boundary generates a series of high-order free waves
traveling at different speeds compared to the primary wave
crest, which causes the secondary peaks, asymmetry and
distortion, and spatial variation in wave profiles. There-
fore, the symmetry with respect to the crest is not likely to
be achieved unless the effects of free waves are negligible
(or perfectly fully-nonlinear wave kinematics are fed).

The free waves continue to propagate further down-
stream, and thus the simulation does not produce a perfectly
symmetric waveform with respect to the crest. Fig. 3 sup-
ports the above explanation. Goda conducted experiments
in a physical wave tank and explained the phenomenon of

the spatial variation of water waves in a laboratory flume [9].
Physical and numerical wave tanks share the similar prob-
lem of mismatch at the wavemaker boundary. Hence, spa-
tially varying wave elevations occur in the following cases.

5.2
Convergence test
To conduct a convergence test, the following case was
chosen: linear input wave height 5 cm, wave length
12.57 m, the probe located at x ¼ 10 m from the left input
boundary, total wave tank 50 m including the 20 m-long
damping zone. The comparison of the wave elevation time
series by applying two different free-surface mesh resolu-
tions is shown in Fig. 4. The coarser grid system has 20
collocation points per wave length and the finer has 50%
more points on the free surface i.e. 30 points per wave-
length. The difference is less than 0.77%, which leads to a
conclusion that this mesh generation is fine enough for
this problem. For the rest of the examples presented in this
paper, 25 collocation points per wave length were used on
the free surface. For the kinematics calculation of the most
nonlinear case (Fig. 12), denser grid system (30 points per
wavelength) was used to be conservative.

5.3
Nonlinear vs. linear numerical solutions
The wave steepness H/L, which is a ratio of wave height to
wavelength, can be an index of nonlinearity of gravity waves.
Please note that all numeric values of A, H, and L in the
captions of the following figures are linear wave input val-
ues. Two different waves were used to investigate how this
index affects the wave profiles and wave kinematics. The
input values of two simulations are summarized in Table 1.
In this example intermediate water depth was chosen.

As the wave steepness increases, nonlinear wave profiles
have more skewed non-symmetric forms and the height of
wave crests increases and the trough decreases, as shown

Fig. 4. Convergence test based on wave elevation: Wave elevation
comparison with the coarser mesh (solid line) and the finer mesh
system (dots) makes 0.77% difference in wave height for 50%
increase of the total number of the collocation points

Table 1. Input parameters of two case runs (linear wave)

Case A (m) L (m) H/L T (s) h (m) k (m�1) U0 (m/s)

A 0.05 12.57 0.008 4.17 1.0 0.50 0.0
B 0.10 12.57 0.016 4.17 1.0 0.50 0.0
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in Figs. 5 and 6. Both simulation results show the non-zero
mean due to nonlinearity. The overall shape of the waves is
shifted upwards. The difference between linear and non-
linear simulation is more pronounced when the wave
velocity or acceleration are calculated.

5.4
Multi-layer Boussinesq model
The past decade saw the advent and wide spread appli-
cations of Boussinesq-type equation models for studying
water wave propagation in one- and two-horizontal
dimensions. This depth-integrated modeling approach
employs a polynomial approximation of the vertical profile
of the velocity field, thereby reducing the dimensions of a
three-dimensional problem by one. With the use of an
arbitrary vertical evaluation level of the characteristic
horizontal velocity vector, the Boussinesq equations have
good linear dispersion accuracy to kh � 3 [17].

Further enhancing the deep-water accuracy of the
depth-integrated approach is the so-called high-order
Boussinesq-type equations. While the Boussinesq models

such as Nwogu’s use a quadratic polynomial approxima-
tion for the vertical flow distribution, these high-order
models use fourth, and higher, order polynomial approx-
imations. Gobbi et al. [8], using a fourth-order polynomial,
developed a model with excellent linear dispersive prop-
erties up to kh � 6. The multi-layer model employed here
represents a different approach to developing a depth-
integrated model with high-order dispersive properties.

The multi-layer derivation consists of a piecewise
integration of the primitive equations of motion through
N constant-density layers of arbitrary thickness. Within
each layer, an independent velocity profile is determined.
With N separate velocity profiles, matched at the interfaces
of the layers, the resulting set of equations have N þ 1 free
parameters, allowing for an optimization with known
analytical properties of water waves. The optimized
two-layer model equations show good linear wave char-
acteristics up to kh � 8, while the second-order nonlinear
behavior is well captured to kh � 6. The two-layer model
is used for all the results presented in this paper.

A finite difference numerical model is developed for the
multi-layer equations, and comparisons with analytical
solutions and experimental datasets shows excellent
agreement [15, 16]. Waves are generated inside the
numerical domain using an internal source generator. The
pre-specified current is sent in through the boundaries,
and the domain is set large enough such that the internally
generated waves do not interact with the lateral bound-
aries.

Table 2. Input parameters of six cases (incident linear wave
condition)

Case A (m) L (m) H/L U0 (m/s) T (s) h (m)

A 0.05 12.57 0.008 0.313 4.17 1.0
B 0.05 12.57 0.008 0.000 4.17 1.0
C 0.05 12.57 0.008 )0.313 4.17 1.0
D 0.10 12.57 0.016 0.313 4.17 1.0
E 0.10 12.57 0.016 0.000 4.17 1.0
F 0.10 12.57 0.016 )0.313 4.17 1.0

Fig. 5. Case A – Comparison of nonlinear (solid line) and linear
(dashes) numerical solutions of H=L ¼ 0:008 at x ¼ 10 m

Fig. 6. Case B – Comparison of nonlinear (solid line) and linear
(dashes) numerical solutions of H/L = 0.016 at x ¼ 10 m

Fig. 7. Time series of nonlinear free-surface wave with coplanar
current for the change of wave height. Each probe is located at
x ¼ 5, 10, and 15 m, respectively. Input linear wave amplitude is
5 cm
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5.5
Comparison with multi-layer Boussinesq model
To investigate the effect of uniform current on nonlinear
propagating waves, six different cases are studied. The
input values are summarized in Table 2.

As shown in Figs. 7 through 12, the coplanar current
following the waves (U0 > 0) makes the wave amplitude
smaller, while the opposing current (U0 < 0) amplifies the
wave amplitude. This trend can also be seen in linear
theory, as predicted by Eq. (18). The figures show the
comparison of fully nonlinear simulations obtained from
the BEM-based NWT (dots) with ones from the multi-layer
Boussinesq model (solid lines). The overall comparison is
excellent and confirms the accuracy of the two indepen-
dent approaches.

When waves interact with opposing currents, stronger
nonlinearity appears, which is characterized by a higher
and sharper crest, shallower and flatter trough, skewness
and asymmetry, and appearance of a secondary peak.

Fig. 8. Time series of nonlinear free-surface wave without cur-
rent for the change of wave height. Each probe is located at x ¼ 5,
10, and 15 m, respectively. Input linear wave amplitude is 5 cm

Fig. 9. Time series of nonlinear free-surface wave with opposing
current for the change of wave height. Each probe is located at
x ¼ 5, 10, and 15 m, respectively. Input linear wave amplitude is
5 cm

Fig. 10. Time series of nonlinear free-surface wave with coplanar
current for the change of wave height. Each probe is located at
x ¼ 5, 10, and 15 m, respectively. Input linear amplitude is 10 cm

Fig. 11. Time series of nonlinear free-surface wave without cur-
rent for the change of wave height. Each probe is located at x ¼ 5,
10, and 15 m, respectively. Input linear amplitude is 10 cm

Fig. 12. Time series of nonlinear free-surface wave with opposing
current for the change of wave height. Each probe is located at
x ¼ 5, 10, and 15 m, respectively. Input linear amplitude is 10 cm
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Figs. 7 through 12 show that the nonlinear features are
greatly magnified with increasing incident wave ampli-
tude. It is also found that wave elevation and shape are
functions of the horizontal spatial variable x as the waves
propagate. It is interesting to see that the wave shape
changes appreciably even within a distance of wave-
length. In the severest nonlinear case (Fig. 12), we can see
the secondary peak propagating at different speed com-
pared to primary wave, which is also demonstrated in
[13]. In Figs. 13, 14, and 15, the corresponding wave
kinematics results are presented. For the wave kinematics
comparison, opposing current cases C and F are selected.
It can be concluded that the two totally different
numerical models produce almost the same results. In
particular, both numerical models produce reliable
results for particle velocities above mean water level,

which are difficult to obtain from experiment. Fig. 15
shows time histories of horizontal and vertical particle
velocities on the free surface. Both BEM and Boussinesq
models show severe nonlinearity, especially in vertical
velocities. In the same figure, the range of linear solution
is also indicated. Judging from Fig. 15 and Table 3, the
difference between linear and nonlinear solutions is
much more pronounced in kinematics comparison than
in surface-profile comparison. For example, the crest of
nonlinear computation can be about twice bigger than
that of linear theory, which is also confirmed by the
multi-later Boussinesq model and demonstrates the
importance of nonlinear computation.

The comparisons between linear and nonlinear com-
putation for coplanar, no, and opposing current cases are
summarized in Table 3. The difference in wavelength

Fig. 13. Vertical profiles of velocity com-
ponents for A ¼ 5 cm (linear wave input),
opposing current. The profiles of hori-
zontal velocity (solid line) and the vertical
velocity (dashed line) predicted by the
Boussinesq-type model. The profiles of the
horizontal velocity (circles) and the verti-
cal velocity (squares) predicted by the
BEM model. Subplot a gives the profiles at
the time of maximum vertical velocity, b at
maximum horizontal velocity (under
crest), c at minimum vertical velocity, and
d at minimum horizontal velocity (under
trough)

Fig. 14. Vertical profiles of velocity
components for A ¼ 10 cm (linear wave
input), opposing current (Same caption
as in Fig. 13)
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between linear and nonlinear solutions is less pronounced
compared to crest and trough values.

6
Concluding remarks
In this paper, fully nonlinear wave interactions with steady
uniform currents and the resulting kinematics are studied.
First, both Lagrangian and semi-Lagrangian schemes are
developed. It is shown that the two independent methods
produce identical results. The Lagrangian approach is
found to be more effective in wave–current simulations.
However, the Lagrangian approach requires a regridding
scheme to prevent numerical instability. Changes of wave
crests, troughs, and wavelength due to wave–current
interactions are simulated and compared with the results
of a multi-layer Boussinesq numerical model. The non-
linear simulations give, in general, larger and sharper crest
amplitudes and velocities compared with linear theory.

For opposing current cases, the wave steepness becomes
larger (the crest becomes higher and sharper while the

trough becomes shallower and flatter), as the current
speed increases. As a result, both surface profiles and wave
kinematics exhibit highly nonlinear features including
secondary peaks. For coplanar current cases, the wave
amplitudes decrease and the wave length becomes longer
as the current speed increases. The nonlinear waves also
change shapes even within a couple of wave-length dis-
tance as they propagate downstream. More nonlinear
features can be observed in farther downstream.

Lastly, wave–current interaction is an important
process in various mass transport problems. It can also
appreciably increase wave crest height and cause large
wave forces when the wave crests run up or hit any part of
ocean structures. It is also shown that the crest values in
kinematics can be significantly amplified compared with
the linear solutions as a result of nonlinear interactions.
The observed nonlinear effects may be of significant
importance to various environmental problems and the
design of coastal and offshore structures.
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