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This paper aims to introduce non-dispersive shallow water and dispersive, Boussinesq-type numerical
models used in tsunami modeling, as well as an approach to two-way couple these models together.
The fundamental purpose of the coupling effort is to develop the capability to seamlessly model tsunami
evolution from generation to inundation with fine scale resolution, without the loss of locally important
physics. The two model components are briefly introduced, and the physical mismatch between the two
models is examined analytically. As coupling of numerically and physically heterogeneous models may
result in undesirable errors, a general benchmark test has been undertaken to provide a parameter range
for expected accuracy and stability. Long wave propagation onto a shallow shelf is simulated to validate
the coupled model, examining the importance of dispersive and nonlinear effects in the nearshore area,
as well as the utility of the coupled modeling system. Finally, the model is applied to the 2004 Indian
Ocean tsunami. In this test, the local dynamics experienced in the Port of Salalah in Oman, as documented
by Okal et al. (2006), are recreated.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

As a long gravity wave propagates over a non-uniform ocean bot-
tom, shoaling and refraction can have a transforming effect. The re-
sponse of waves to bathymetric changes results in deformation of
the amplitude and wavelength, permitting waves to conserve mass
and momentum. Many efforts have been made to construct a rela-
tionship between wave height and water depth, and using various
levels of approximation (e.g., linear waves) it is possible. For the
approximation of long and intermediate length (or shallow and
intermediate depth) waves, two physical characteristics of waves,
nonlinearity and frequency dispersion, are generally employed.

Under a ‘‘true’’ long wave, frequency dispersion is negligible.
This assumption yields a hydrostatic pressure field and a horizon-
tal velocity that is uniform over depth. A tsunami is often consid-
ered a long wave. Frequency dispersion in a tsunami can be
ignored when the tsunami wavelength, typically on the order of
100 km in the deep ocean, is considerably larger than water depth.
Therefore, the usual approach to describe tsunami evolution is to
take either the linear or nonlinear shallow-water models as the
governing equations. A number of computational models based
on this approximation exist, and some are introduced here. Meth-
od of splitting tsunami (MOST) developed by Titov and Synolakis
(1998) is capable of predicting wave height or inundation using a
ll rights reserved.
technique where two-dimensional equations are split into a pair
of one-dimensional equations. Liu et al. (1998), on the other hand,
presented Cornell multi-grid coupled tsunami model (COMCOT)
adopting the staggered leap-frog integration with an upwind
scheme for the nonlinear convective terms. COMCOT can also mod-
el tsunami propagation and some nearshore-dynamics such as run-
up. Global tsunami model (GTM) was designated for assessment of
tsunami hazard, inundation, mapping and prediction of the tsu-
nami arrival time by Kowalik et al. (2005). More recently, aided
by adaptive finite volume methods for wave propagation, Tsun-
amiClaw (Conservation Laws) has been created as a work of George
and LeVeque (2006). Lastly, TsunAWI uses the finite element meth-
od with the advantage of flexibility in grid generation, and was
found to be comparable to the multi-grid, nested modeling
approach (Harig et al., 2008).

Even though all of these models employ different numerical tech-
niques, all solve the linear and/or nonlinear shallow water equa-
tions. Depending on the wavelength of the tsunami, however,
frequency dispersion effects can be significant. Specifically, neither
hydro-static pressure nor depth-constant horizontal velocity can
be presumed. For transoceanic propagation of a tsunami as well as
landslide-generated tsunami, the dispersive effects, estimated
through the ratio of water depth to wavelength, should be included
to yield more accurate results (e.g., Yoon, 2002; Lynett et al., 2003;
Grilli et al., 2007). For this reason, some efforts to add the
frequency dispersion effect into non-dispersive models through
numerical truncation error have been made (e.g., Yoon, 2002;
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Burwell et al., 2007). Despite such attempts to mimic physical
dispersion, it is still an attractive challenge to model tsunami with
the Boussinesq or Navier–Stokes equations with the aim to,
hopefully, obtain more realistic wave predictions. Corresponding
examples include Cornell University long and intermediate wave
modeling package (COULWAVE) by Lynett et al. (2003), GEOWAVE,
which is equipped with the fully nonlinear wave model
(FUNWAVE) engine, by Grilli et al. (2007), and recent work by Saito
and Furumura (2009).

The above mentioned computational models aim, of course, for
accurate prediction of nearshore physics such as wave shoaling,
wave-diffraction and refraction, run-up and nonlinear interactions
of waves, each with their specialized advantages, e.g., small com-
putational time of COMCOT or rigorous representation of physics
in the Boussinesq model. In coastal regions, where the water depth
is very shallow and amplitude and wavelength can become high
and short, nonlinear and bathymetric interactions across a wide
range of frequencies occur. These interactions can locally generate
various shorter-crested, or dispersive waves components. A well
known example is the transformation of a tsunami front into an
undular bore. Thus, the nearshore is expected to be nonlinear
and (possibly) dispersive, and Boussinesq model is appropriate,
as addressed in some literature (e.g., Lynett, 2006). In related
efforts, Kim et al. (2009) have presented a depth-integrated model
for weakly dispersive, turbulent and rotational fluid flows. This ap-
proach permits the explicit inclusion of viscous effects in shallow
water, coupled with the nonlinear and weakly-dispersive physics
of the Boussinesq model. With accuracy, this model can simulate
nonlinear and weakly dispersive nearshore dynamics, as well as
large eddies generated by long waves and currents.

Here it is postulated that a more physically complete attempt at
tsunami modeling can be achieved through the integration of a
shallow water equation model with a Boussinesq model. COMCOT
is computationally ‘‘in charge’’ of generation and propagation of
tsunamis in the deep, open ocean, which in general will be the
huge majority of a simulation domain. On the other hand, the
Boussinesq effort can be concentrated on a specific area of interest,
typically nearshore where waves are prone to high nonlinearity,
turbulence, and local frequency dispersion.

This paper aims to introduce a set of numerical models used in
tsunami modeling, as well as a method to couple them together.
The fundamental purpose of the coupling effort is to develop the
capability to seamlessly model tsunami evolution from generation
to inundation with fine scale resolution, without the loss of locally
relevant physics. In addition to this, local turbulent structures, such
as eddies and gyres, generated by tsunamis in the nearshore area or
around coastal structures can be studied with the coupled model.

The outline of this paper is as follows. In the first two sections,
the model components, the shallow water wave equation model
(COMCOT) and the Boussinesq-type model, will be briefly intro-
duced with their numerical scheme. Physical and numerical ‘‘mis-
matches’’ between the two models will be discussed analytically,
which is followed by the coupling method given in detail. The next
section is devoted to the validation of the coupled model through a
benchmark test with wide-varying conditions and resulting guid-
ance for general use. A typical problem of long wave propagation
into the coast is given in following section. Finally, the presented
model is applied to the 2004 Sumatra tsunami to investigate near-
shore dynamics, with a particular focus on the eddies generated in-
side a harbor basin.
2. Shallow water equation model

As introduced above, Liu et al. (1998) presented a nested multi-
grid model which has the option of using either the linear or the
nonlinear shallow water equations (NLSW) with two different
types of coordinate systems, namely Cartesian or spherical. This
general framework includes the effects of bottom friction as well
as a special treatment for the moving shoreline. The model named
COMCOT v.1.6 has been adapted here to simulate tsunami propa-
gation across oceanic basins.

2.1. Governing physics

The nonlinear shallow equations including bottom frictional
effects in conservative form are:
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in which f is the surface elevation, h is the still water depth,
H = h + f is the total water depth, and M, N are the volume fluxes
in the x and y directions, defined respectively as Hu and Hv. The bot-
tom friction terms sx, sy in the momentum equations are approxi-
mated in COMCOT via Manning’s formulation:

sx ¼
gm2

H7=3 MðM2 þ N2Þ1=2
; ð4Þ

sy ¼
gm2

H7=3 NðM2 þ N2Þ1=2
; ð5Þ

where m is the Manning’s relative roughness coefficient. Note that
the above equation set is the nonlinear solver in COMCOT; the lin-
ear solver of course neglects the convection terms in the momen-
tum equations, and does include the Coriolis force when solving
in spherical coordinates.

2.2. Numerical scheme

The numerical scheme employed by COMCOT is the explicit
leap-frog difference method. Nonlinear terms in the model are
approximated with upwind finite differences and linear terms by
two-point centered finite differences. This numerical scheme is
stable and robust but is a low-order accurate method, meaning
that it is susceptible to numerical dispersion and dissipation errors.
The finite difference forms for the continuity and momentum
equations are described in Appendix A. The finite difference stencil
of this scheme is depicted in Fig. 1, suggesting two neighboring
points on each side of a calculation point are necessary for each
location calculation of derivatives.

For the present study, COMCOT has been parallelized for use on
shared-memory computers, such as multi-processors and/or
multi-core computers. OpenMP was used for the parallelization,
which is the standard method for shared-memory parallelization.
The parallel model has been tested up to 8 processors, and shows
a near linear speed-up (using 8 processors reduces CPU time by a
factor of 1/8).

To generate the tsunami from an undersea earthquake, COM-
COT uses the fault model of Okada (1985). The main assumptions
of this model are a rectangular fault plane within an elastic defor-
mation. The fault model predicts the deformation of the seafloor,
which corresponds directly to the initial deformation of the ocean
water free surface. Once the earthquake has been described with
the above parameter set, COMCOT is able to propagate the initial
disturbance across oceans. For propagation across deep ocean
waters, COMCOT gives the option of using the linear version of
the shallow water equations. This version is solved considerably



Fig. 1. Finite difference stencils for COMCOT.

Fig. 2. Finite volume stencil for Boussinesq model.
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faster, in the computational sense, than the nonlinear version, and
can be used with confidence as long as the tsunami wave height is
a very small fraction of the depth, practically less than 1/25–1/50
of the local depth. When this threshold is exceeded, the nonlinear
version of COMCOT is required for accurate results. Generally, if
runup or nearshore wave heights are needed, the nonlinear version
of the model should be used.
For runup calculations, COMCOT utilizes a simple but accurate
moving shoreline algorithm. The continuously sloping beach
profile is approximated as a stair-stepped profile. When the water
level exceeds the elevation of the ‘‘stair’’ above, the water floods
that ‘‘step’’ and the shoreline moves landward (inundation). This
approach has shown to re-produce analytical solutions reasonably
and field data as well as any other published, shallow-water equa-
tion model.

3. Boussinesq equation model

Recently, Kim et al. (2009) have presented a depth-integrated
model for weakly dispersive, turbulent and rotational fluid flows.
It is derived from the spatially-filtered Navier–Stokes equations
in order to consider viscous effects of a turbulent fluid. Accord-
ingly, this model includes approximated bottom-induced turbu-
lence and thereby the associated vertical and horizontal
rotational effects can be captured. In the present study, we have
adopted the Boussinesq model of Kim et al. (2009) to simulate
the nearshore hydrodynamics and turbulence effects such as large
eddies and wakes generated in the nearshore.

3.1. Governing physics

The Boussinesq-type equations including turbulent viscosity
and the associated horizontal and vertical vorticity terms are given
in conservative form below:
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where Ua and Va are the x and y component velocities at
za = � 0.531 h and Dx

m;D
y
m are 2nd order correction terms of the

depth-integrated momentum equations as defined in Kim et al.
(2009). Likewise Dc includes 2nd order correction terms in the con-
tinuity equation. It is noted that the dispersive, viscous, and vortic-
ity corrections are included as these 2nd order terms. All 2nd order
terms can be found in Appendix B.
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3.2. Numerical scheme

To numerically solve the governing equations in conservative
form, a highly accurate and stable model is developed. The numer-
ical method uses a fourth-order monotone upstream-centered
schemes for conservation laws–total variation diminishing
Fig. 3. Schematic drawing of coupled grid s

Fig. 4. Data exchange schematic between COMCOT and B
(MUSCL-TVD) to solve the leading order (shallow water) terms,
while for the dispersive terms, a cell averaged finite volume meth-
od is implemented. For the time integration, a third order Adams–
Bashforth predictor and the fourth-order Adams–Moulton correc-
tor scheme has been used to keep numerical truncation errors
small. It is noted that Boussinesq-type models such as the one
ystem (‘‘Zone A’’ is specified for Fig. 4).

oussinesq grids (detailed view of ‘‘Zone A’’ in Fig. 3).
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solved here, which include up to third-order spatial derivatives, re-
quire a high-order solution scheme to keep the derivatives associ-
ated with the numerical truncation error at least an order below
those contained in the model equations.

The explicit predictor step is

fnþ1 ¼ fn þ Dt
12
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The implicit corrector step is
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Fig. 5. Flowchart of coupled COMCOT
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where the superscript n denotes time level and the subscripts x and
y imply derivatives in the x and y direction, respectively. E, F, G, F1,
G1, Fp

v ;G
p
v ; F

c
v ;G

c
v in the above equations include a number of

spatially discretized terms; all can be found in Appendix B. The
finite volume stencil for this scheme is displayed in Fig. 2, which
shows that 4 neighboring points are required for each local
calculation.

4. Preliminary discussion for mismatches between models

It is necessary to compare models in terms of both physical
limitations and numerical properties, as this will provide the basic
–Boussinesq model calculations.



Fig. 6. Grid system for different grid sizes between COMCOT and Boussinesq model (lower-left corner section only).

Fig. 7. Physical concept of Gaussian hump simulations; top: front view, bottom:
plan view.
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guidance for coupling. There exist two major groups of errors, one
from approximated equations and the other from the numerical
scheme, the so-called truncation error. Prior to our coupling work,
we shall thus consider the physical and numerical differences be-
tween COMCOT and the Boussinesq model, since the models, of
course, have different governing equations as well as very different
numerical solution schemes, which will cause a physical and
numerical accuracy mismatch along the coupling interface.

4.1. Mismatch in physics

COMCOT, based on the shallow water equations, approximates
the horizontal velocities and pressure gradient to be constant with
depth, so one can ignore vertical variation of physics. On the other
hand, Boussinesq-type equations allow (weak) vertical change of
horizontal velocity, expressed as quadratic function of z. This
allowance of vertical variation in the flow permits the model to in-
clude the effects of frequency dispersion. In addition to this, Kim
et al. (2009) included viscous and rotational effects, which origi-
nate from bottom-induced stress. Both frequency dispersion and
viscous effects exist as corrections to the leading order terms-the
inviscid nonlinear shallow water equations. This can be seen
straightforwardly by eliminating 2nd order terms in Eqs. (6)–(8)
and then comparing with Eqs. (1)–(3). Also note that the bottom
friction terms in both models are included, but in a different man-
ner; COMCOT has ad hoc added friction terms in the momentum
equations, while the Boussinesq model has both the bottom stress
and a number of additional terms resulting from an explicit inclu-
sion of bottom stress in the derivation. Consequently, in order to
avoid errors from these physical differences, dispersive and viscous
effects should be sufficiently small in order for governing physics
to be continuous across the model interface. In other words, phys-
ics-driven model errors can be mitigated when the local relative
depth (h/L) and bottom friction along interface are small. Of course
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in a general, nonlinear simulation, one can not for example guaran-
tee the minimum simulated value of L a priori, but such relations
can be used as guidance for constructing a simulation.

4.2. Mismatch in numerics

Different numerical solution schemes will produce different
output even if solving the same algebraic equations. Discretizing
equations using any sort of numerical method includes an error
from truncation, and such errors of course depend on the numeri-
cal scheme itself. As explained in the previous section, COMCOT
and the Boussinesq model employ different types of schemes;
while both are fixed grid solvers, the spatial stencils of the two
schemes are very different, as are the time integration methods.

Again, the Boussinesq solver is a fourth-order accurate scheme
and COMCOT a second-order scheme. Since all numerical trunca-
tion errors from the Boussinesq solver are at least two orders of dif-
ferentiation higher than those from the COMCOT solver, the
primary numerical error will originate from the nonlinear COMCOT
model. Specifically, the leading order truncation error arising from
the upwind differencing can be given as:

Er ¼ 0:5ð1� CrÞuDx
o2u
ox2 ; ð17Þ

where Er is the numerical truncation error of the upwind difference
and Cr is the local courant number, given as ðDt

ffiffiffiffiffiffi
gh

p
Þ=Dx. In general,

it is not possible to ensure Cr � 1 in COMCOT for an arbitrary grid
with variable bathymetry, and furthermore the maximum allow-
able Cr in the COMCOT scheme according to stability analysis is
0.7 (in the Boussinesq it is 0.5 according to Kim et al. (2009)). It is
reasonable to assume that Er � O uDx o2u

ox2

� �
for a generic geophysical

simulation. Thus, the only solution to ensure a precise numerical
match across the coupling interface is to have a true long wave,
with negligible depth-averaged velocity curvature in the horizontal
plane, at the interface location. This conclusion is not surprising, as
the shallow water based COMCOT model has this as a general
requirement for accuracy in any and all applications. By requiring
that, at the interface, the physics represented by COMCOT are valid
for that location, the mismatch in numerics essentially vanishes. If
one was able to isolate the dispersive and viscous effects in the
Boussinesq domain, and such effects were small at the coupling
interface, the model matching would be best.

From the above discussion, it can be reasonably expected that
the primary errors expected at the coupling interface are driven
by physical differences in the model equations, and specifically
use of the COMCOT model for a hydrodynamic situation where it
is, strictly speaking, beyond its physical validity limits. Note that
Fig. 8. Definition sketch for L⁄.
possibly large numerical differences might also exist; however as
discussed above these arise when the wave is not practically long,
and the velocity curvature is not negligible. This expectation im-
plies that some sort of special treatment to deal with the physics
mismatch will be required at the interface. This will be described
in more detail in the next session. The general approach will be
to turn ‘‘off’’ of the high order terms in the Boussinesq model at
the interface and slowly turn them back ‘‘on’’ as one moves inside
the Boussinesq domain. The remaining model mismatch errors,
controlled by slightly different viscous closures and very different
numerical schemes, will be mitigated by spatial filtering. Stability
and accuracy of this special treatment will be discussed as well.

5. Coupling approach

The coupling method in which the shallow water model and
Boussinesq model are integrated is presented here. The constitu-
ents are two-way coupled. Boundary conditions on the interfacing
side of each model are provided by its counterpart model through
data exchange and overlapping grid points.

5.1. Coupling method

To accommodate data exchange between the two models, the
computational grids of both models should be overlapping, as
shown in Fig. 3. Since each model has derivatives of different order
in the corresponding governing equations, they each need a differ-
ent number of overlapping points. These overlapping points act as
exterior boundary conditions on the spatial edges of the computa-
tional domain; they are effectively imaginary grid points with data
values taken from the neighboring model. As seen in Fig. 4, COM-
COT needs two points as a boundary condition whereas the Bous-
sinesq model requires four neighboring points due to the 4th order
MUSCL-TVD scheme and 3rd order spatial derivatives. Also, special
attention must be paid to the calculation of velocity as each model
defines velocity (or flux) at a different location relative to a cell
(grid points are defined at the center of a cell). In the Boussinesq
model, surface elevation as well as velocity components are
defined at the center of the cell. On the other hand, flux has been
placed at the interface of each cell in COMCOT model due to the
staggered grid.

With this concept of the interface treatment, we propose the
calculation algorithm as shown in Fig. 5. The algorithm consists
of two main parts. The first part is the COMCOT model calculation
on the left side of Fig. 5 and the other is the Boussinesq model
calculation on the right side. They exchange data every time step
through two-way coupling, as indicated by the boxes in the middle
of Fig. 5.

The coupling algorithm can be explained in more detail by pro-
ceeding step by step. Let it be assumed that information up to time
level t = tn is known. Note that the numerical scheme of COMCOT is
staggered not only in space but also in time. Therefore in COMCOT,
flux is known at time level t = tn and the surface elevation at time
level t = tn�1/2. For the Boussinesq model, the surface elevation and
velocities at time level t = tn�1/2 are known. All dependent variables
in the Boussinesq model are calculated at the same time level,
Table 1
Simulation setup.

r � Cr e

1 0.001 0.01 1
2 0.01 0.05 2
4 0.1 0.1 5
6 1 0.5 10

10 – – –
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t = tn+1/2, whereas COMCOT simulates the surface elevation and
flux terms at the time level t = tn+1/2 and t = tn+1, respectively, fol-
lowing the leap frog scheme. The coupled solution scheme is out-
lined below.

1. Calculate COMCOT free surface at time level t = tn+1/2 by solving
the NLSW continuity equation with flux information at time
level t = tn and surface elevation at time level t = tn�1/2.

2. Calculate all predictor step values in the Boussinesq model,
yielding initial predictions at time level t = tn+1/2 for surface ele-
vation as well as velocity.

3. Transfer predictor Boussinesq surface elevation values and
fluxes along the interface at time level t = tn+1/2 and t = tn,
respectively, into COMCOT as boundary conditions. Note that
Boussinesq flux term should be interpolated not only spatially
but also in time. Linear one-dimensional interpolation is used,
numerically consistent with the upwind differencing in COM-
COT. If the grid size in each model is not constant, utilize a
two-dimensional (bi-linear) interpolation technique to give
appropriate boundary condition at the interface.

4. Calculate the COMCOT flux at time level t = tn+1 by solving the
shallow water momentum equation with surface elevation
information at time level t = tn+1/2 along with flux at time level
t = tn. In this step, the information transferred from Boussinesq
model has been used.

5. Extract the boundary condition at time level t = tn+1/2 to be
transferred from COMCOT into the Boussinesq model. Again,
note that the Boussinesq model does not employ a staggered-
grid in time. Having already calculated the COMCOT surface ele-
vation at time level t = tn+1/2, our interest will focus on getting
the COMCOT flux at time level t = tn+1/2. This can be done simply
by taking average two values both at time level t = tn and
t = tn+1.

6. Transfer the COMCOT surface elevation and flux along the inter-
face at time level t = tn+1/2 into the Boussinesq as boundary con-
ditions required for the implicit corrector step.

7. Calculate the surface elevation and velocities at t = tn+1/2 from
the Boussinesq corrector using COMCOT boundary conditions
at time level t = tn+1/2.

8. Optionally, a filtering technique can be applied in order to
remove spurious two-grid wave components with high fre-
quency. See Section 5.3 below for details.

9. Return to step 1 for the next time step.
0 200 400 600 80
−5

0

5

10
x 10−5

time

ζ 
(m

)

Fig. 9. Temporal variation of free surface elevation at the cent
5.2. Coupling with different grid size

Coupling with different grid sizes can also be accommodated.
For the estimation of information at an interface, an interpolation
technique has been used. If the relative position of a desired point
in a grid is known, fa at the desired point (xa,ya) is calculated by
using bilinear interpolation as follows:

fa ¼ ð1� tÞð1� uÞfBL þ tð1� uÞfBR þ tufTR þ ð1� tÞufTL; ð18Þ

in which:

t � xa � xL

xR � xL
; u � ya � yB

yT � yB
; ð19Þ

where the subscript L, R, B and T in the above definition respectively
means left, right, bottom and top. Fig. 6 shows the grid system for
coupling with different grid sizes.

5.3. Special numerical interface treatment

Each of the two numerical models coupled here has its own
governing equations (approximated physics) and numerical
scheme, and this can result in both a physical and numerical mis-
match along the interface, as discussed above. From a qualitative
analysis of the equations and numerical differences, it is extrapo-
lated that large numerical differences arise only when significant
equation (physics) differences exist. This expectation was observed
during early testing of the interface. To reduce this primary error
dependency on the mismatch of model physics, the high-order dis-
persive terms in the Boussinesq model are neglected at the inter-
face. These terms are linearly ramped back into the equations
over a length of 20 grid points moving away from the COMCOT
interface.

While forcing the two numerical schemes to solve similar gov-
erning equations at the interface eliminates a large fraction of the
interface error, the different viscous treatments and numerical
solvers will still incur some error in the simulation. This error com-
monly takes the form of spurious high-frequency, two-grid wave
components; in essence numerical noise reflected off ‘‘improper’’
boundary conditions. To remove this spurious two-grid wave com-
ponent, the nine-point spatial filter is employed as suggested in
Shapiro (1970).
0 1000 1200 1400 1600
(sec)

Numerical
Analytical

er of the wave basin (r = 1,� = 0.001,Cr = 0.01 and e = 10).



Fig. 10. Snapshots of water surface at 3 different times (r = 1,� = 1,Cr = 0.01 and
e = 10).
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fi ¼
1

256
186fi þ 56 fi�1 þ fiþ1ð Þ � 28 fi�2 þ fiþ2ð Þf

þ 8 fi�3 þ fiþ3ð Þ � fi�4 þ fiþ4ð Þg: ð20Þ

Note that application of this filter is common in high-order Bous-
sinesq applications, which tend to be prone to high frequency insta-
bility (e.g., Gobbi and Kirby, 1999), and is not used in the COMCOT
domain. The filter is typically applied throughout the entire Bous-
sinesq domain once every 100 time steps.

6. Validation

As discussed above, coupling of two heterogeneous models is
subject to the generation of undesirable errors. These errors are a
function of wave nonlinearity and dispersion, and are difficult to
quantify directly for model operation. To define validity for practi-
cal application, a general benchmark test is proposed with various
initial, geometric, and numerical conditions. For this simulation
experiment, COMCOT’s nonlinear shallow water equation model
is coupled with the fully nonlinear version of the Boussinesq mod-
el. This approach is taken in order to examine the typical applica-
bility space, since this combination can be regarded as both the
most physically well-matched coupling (compared to using the lin-
ear COMCOT), and likely also the most common matching setup.
The ad hoc modifications presented in Section 5.3 are not used
here, to provide a more conservative result. Finally, output from
these ‘‘validation’’ simulations are evaluated, with a strong focus
on stability and accuracy.

6.1. Gaussian hump simulation

The Gaussian hump initial condition is very useful for this test
as the resulting water surface disturbance radiates in all directions,
forcing cross-derivatives in the model to be non-zero; there is no
dominant propagation direction. The Gaussian hump used here
has the initial free surface condition defined as:

fðx; y; tÞ ¼ H0 exp � 1
a2 x� x0ð Þ2 þ y� y0ð Þ2
n o� �

; ð21Þ

where H0 is the initial height of the hump at its center (x0, y0) and a
is the characteristic horizontal lengthscale of the Gaussian hump.
All initial velocities are set to zero. The analytical solution for this
case can be derived with the assumption of a small amplitude wave,
or equivalently a linearization of the governing equations. A solu-
tion using Fourier decomposition can be found in Wei and Kirby
(1995).

6.2. Physical and numerical setup

The test cases include various physical conditions with different
initial H0/h and a/h, in order to consider the effect of nonlinearity
and frequency dispersion on the results. Fig. 7 shows the physical
layout of the basin and computational grids. The length of the ba-
sin has been fixed at 100 m over all the simulations while the var-
ious other parameters are changed. Nonlinearity is expressed in
the typical format as � = H0/h and dispersion as l = h/L⁄. Here L⁄,
is a characteristic length scale of the initial condition, given as
the length between wave points at 5% H0, and graphically defined
in Fig. 8. The tested range of this parameter is 0.0002–0.0193, a
range common for tsunamis where significant dispersion is not
expected to be important. l is not studied in this parametric exer-
cise; these results are only valid for incident long waves where
COMCOT can be expected to yield accurate predictions. Nonlinear-
ity ranges from � = 0.001–� = 1.0.

Along with different combinations of physical conditions,
numerical parameters are varied as well. These numerical param-
eters, represented by the grid size ratio between COMCOT and
Boussinesq model (r = D xC/DxB ) and the CFL condi-

tion Cr ¼
ffiffiffiffiffiffi
gh

p
Dt=Dx

� �
are set to cover a wide range of possible

configurations. Additionally, the ratio of the Boussinesq grid size
to the water depth (e = DxB/h) is tracked to examine some observed
instability possibly due to a relatively small Boussinesq grid size.

Consequently, throughout the simulations, four dimensionless
parameters (r,�,Cr, and e) are controlled so as to characterize fac-
tors affecting the numerical results. Those parameters and their
ranges are listed in Table 1, producing 320 unique parameter com-
binations. For any four parameter set, a simulation is completely
described in terms of its physical and numerical configuration.
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The order by which all the parameters can be calculated is as
follows:

1. Calculate DxB using r (DxC = 1.0 m, nxC = 100 throughout all the
simulations).

2. Next, the number of grid points in the Boussinesq domain can
be determined as nxB = r � (50 � 1) + 1 + 4 + 4. Note that for
imaginary, overlapping grids, 4 grids are added on each edge.

3. Calculate h using e.
4. H0 can be obtained by �(=H0/h).
5. The initial Gaussian surface is generated using a = 15 m.
6. Finally, Dt is determined using Cr ¼

ffiffiffiffiffiffi
gh

p
Dt=DxB

� �
.

where Dx, nx denote grid size and grid number, respectively, Dt
the time increment, h the water depth, and H0 the height of
hump, respectively. The non-dimensional simulation time,

t0 ¼ t
ffiffiffiffiffiffi
gh

p
=L�

� �
¼ 30 has been used for all cases; all individual cases

have approximately the same number of water surface fluctuations
(characteristic periods) during each simulation.

Among the 320 runs, the most computationally expensive case
will be the one with r = 10, Cr = 0.01, and � = 1.0 which corresponds
to DxB = 0.1 m, Dt = 0.01 s and nxB = 499. On the other hand, the set
having r = 1, Cr = 0.5 and e = 10 which gives DxB = 1.0 m,
Dt = 0.505 s and nxB = 58 will be the most rapid. Runs required a
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few minutes to a few hours to complete on a desktop computer;
the longest runs where those which developed numerical instabil-
ities, causing excessive iteration of the Boussinesq corrector step.
6.3. Simulation results

Comparison with an analytical solution is, of course, the ideal
method to evaluate the accuracy of a numerical model. However,
the aforementioned analytical solution is be obtained using linear-
ization; most of the (�) values tested would violate the required
assumption for linearization. Hence, the analytical solution will
only be used to show that the coupled numerical model is produc-
ing accurate results for the smallest (�) cases. Fig. 9 shows the time
series of water surface elevation at the center of the Boussinesq
domain when r = 1, � = 0.001, Cr = 0.01 and e = 10. The comparison
between numerical and analytical data is excellent for this small
amplitude case and the coupled model works quite well. Snapshots
of water surface elevation when r = 1, � = 1, Cr = 0.01 and e = 10 are
also given in Fig. 10. These snapshots are showing both the Bous-
sinesq and COMCOT surfaces, and there are no evident numerical
errors along the interface, or anywhere else in the domain.

Now, interest turns to evaluating output from all 320 simula-
tions in some characteristic way. Here, the time series of surface
elevation at the center of the domain will be used as the compar-
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Fig. 12. Error distribution according to stability index, c, with fitted curve.
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ison basis. Considering that use of the linearized analytical solution
is not helpful for assessment of highly nonlinear cases, some other
available data for accuracy evaluation must be found. Here, a
‘‘base’’ case for each � and l combination is proposed. Each base
case uses r = 1 and Cr = 0.01, which is expected to produce most
accurate and stable result for any physical parameter combination.
Therefore, each simulation is able to be evaluated relative to its
base case, assumed to be the ‘‘correct’’ solution. Note, however,
that with this approach, it is not possible to state with absolute
confidence that the ‘‘base’’ case represents an accurate solution,
only a stable, converged one. It is likely that stability and accuracy
occur in tandem, but this is not guaranteed. Simulations that clo-
sely resemble the ‘‘base’’ case can be considered stable simulations,
Fig. 13. Definition sketch of a long wave propagating onto a shallow shelf (LSW
while simulations that do not resemble the ‘‘base’’ case are most
likely unstable and inaccurate. Each numerical result is rated with
respect to the root mean square (RMS) difference from its base case
averaged through the last two dimensionless time units, from
t0 = 28 to 30. An example depicting this procedure is shown in
Fig. 11. Note that if a particular simulation crashes due to instabil-
ity, this RMS difference is set to 1.0.

Despite the straightforward assessment of the simulation data,
it is not a simple matter to demonstrate the relation between the
error and the 4 parameters. As indicated in Table 1 and mentioned
earlier, the 4 parameters are interrelated, yet affect the results in
different ways. For an explicit measure of accuracy and stability
using the 4 correlated parameters, a dimensionless parameter,
the stability index c, is introduced. The stability index is a product
of r, � ,Cr, and e and is expressed as:

c ¼ ra�bCrced; ð22Þ

where the exponents a, b, c and d are to-be-determined by nonlin-
ear regression analysis on the processed data set. Through the sta-
bility index c, the accuracy and stability properties of a coupled
model simulation can be characterized, approximately, before said
simulation is run. The higher the c value, the more poorly behaved
the simulation should be. The exponents a, b, c and d are found
through a best fit with the RMS error of each simulation; the cali-
brated stability index should yield the RMS error expected late in
a simulation.

Through the nonlinear regression analysis, a, b, c and d are
found as 0.0001, 0.0328, 0.0621 and �0.0040, respectively. This
implies that the Courant number (Cr) is the most dominant factor
in a simulation, whereas the stability of the coupled model is
insensitive to both the grid ratio factor (r) and the depth-scaled
grid length in the Boussinesq model (e). Fig. 12 shows the error
distribution according to c. It is not surprising that the distribution
of RMS error in Fig. 12 resembles a typical cumulative probability
curve. There is a transition between stable simulations (RMS error
, linear shallow water equation; NLSW, nonlinear shallow water equation).
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Fig. 14. Time histories of water surface elevations at 4 different locations. In the left half of the figure are shown the coupled model results (solid line: Boussinesq model
(Layer 4, dashed line: measured data), while the right half of the figure shows the COMCOT only results at the same times (solid line: nonlinear shallow water equation model
(Layer 3), dashed line: measured data).
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0) and unstable, inaccurate simulations (RMS error 1), and this er-
ror ‘‘accumulates’’ with increasing c. From this result, it can
roughly but conservatively be stated that the stability index c is
recommended to be less than 0.9 to provide a high likelyhood of
a stable simulation.

7. Tsunami wave fission simulation

As mentioned in the Introduction, the Boussinesq model has the
ability to yield a reasonably complete representation of coastal
hydrodynamics. In this section, which is focused on the demon-
stration of these properties through an efficient use of the coupled
model, model verification will be performed using laboratory data.
Matsuyama et al. (2007) conducted an experiment in a 205 m long
channel using a large and undistorted scale to investigate tsunami
shoaling on the continental shelf. The incident waveform uses a
sinusoidal-shape wave with single cycle defined as:

f ¼ A sin
2p
T

t
� �

; 0 6 t 6 T

¼ 0; t > T ð23Þ
where A is wave amplitude, T is period, and t is time. A single exper-
imental case with A = 0.03 m and T = 20 s, which exhibits significant
tsunami shoaling on the continental shelf, is utilized for this study.
The experimental set-up is depicted in Fig. 13, where the bathyme-
try includes a depth-varying shelf connected by two mild-slopes.
Long waves from the deep water depth become steeper and possi-
bly short-crested when propagating onto a shallow shelf; nonlin-
earity and dispersion effects may need to be taken into account
for an accurate representation of the long wave transformation.

For the offshore propagation region (Layers 1 and 2), the linear
shallow water version of COMCOT is applied using a relatively
coarse grid size of 1.5 and 0.3 m, respectively. Along the nearshore
area, the nonlinear shallow water equations (Layer 3) are coupled
with the Boussinesq model (Layer 4), both using the same rela-
tively fine grid of 0.075 m. Note that a second simulation, without
using the Boussinesq model (i.e., Layer 4 removed), was also per-
formed. This will allow for a direct comparison between nearshore
predictions of COMCOT and the Boussinesq model, with both using
precisely the same incident wave condition and numerical grid
sizes. Fig. 14 presents time series comparisons of water surface ele-
vation between the model results and measurements at different



Fig. 15. Initial surface elevation of 2004 Sumatra tsunami.

Table 2
Grid setup for 2004 Sumatra tsunami simulation.

Layer No. x Range (longitude,�E) y Range (latitude,�N) nx � ny dx dt(s) Model

Layer 1 45�0000000 � 105�0000000 �10�0000000 � 30�0000000 1801 � 1201 20 1 LSW (S) a

Layer 2 45�1701200 � 61�3804800 12�170 1200 � 28�1804800 2455 � 2405 2400 0.5 LSW (S)
Layer 3 52�5603800 � 56�2805800 16�080 3800 � 18�0405800 2655 � 1455 4.800 0.25 LSW (S)
Layer 4 53�5800000 � 54�0400000 16�540 0000 � 17�0000000 600 � 600 18.5 m 0.125 NLSW b

Layer 5 53�5904600 � 54�0101800 16�550 4600 � 16�5701900 309 � 309 9.3 m 0.125 BOUSSc

a Linear shallow water model in spherical coordinates.
b Non-linear shallow water model in cartesian coordinates.
c Boussinesq model in cartesian coordinates.

Table 3
Fault parameters for 2004 Sumatra earthquake.
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locations. The coupled model comparisons are given in the left half
of the figure, while the COMCOT-only results are shown in the
right half. Clearly different behavior of the wave front in the shal-
low shelf region is predicted by the coupled and COMCOT-only
models. The front of the long wave becomes short-crested and gen-
erates (or strictly speaking, disintegrates into) several solitons of
different size (e.g., Madsen and Mei (1969)); this process is referred
to as tsunami wave fission in the literature. This transformation is
the classic undular bore formulation which is dispersive in nature,
and thus not predictable by the shallow water wave equations
solved by COMCOT. The coupled model predicts a maximum sea
surface elevation at the front of the tsunami which is 2.0 times lar-
ger than COMCOT alone, yielding a good agreement with measured
data in both amplitude and speed. This type of difference is highly
local in nature, and provides a reasonable picture of the magnitude
and scale of dispersion-driven physics during nearshore tsunami
evolution.
Parameter Fault 1 Fault 2 Fault 3

Latitude of epicenter (�N) 7.6 4.15 11.85
Longitude of epicenter (�E) 93 94.55 92.3
Focal depth (km) 5 5 5
Length of fault plane (km) 670 200 300
Width of fault plane (km) 150 150 150
Dislocation (m) 15 15 15
Strike angle (�) 345 300 365
Slip angle (�) 90 90 90
Dip angle (�) 13 13 13
8. 2004 Sumatra tsunami simulation

As a practical test, the coupled model is applied to the historical
tsunami event of December 2004 in the Indian ocean, through
which the comprehensive lifespan of a tsunami, from its genera-
tion, propagation, shoaling, and run-up, might be investigated in
true scale. Our specific geographic focus is Port Salalah, along the
southeastern Omani coastline. As noted in the model description,
the Boussinesq model enhanced with the viscosity and vorticity
terms (i.e., Kim et al., 2009) is capable of simulating turbulence ef-
fects such as large eddies and wakes generated in the nearshore or
harbors. Hence, another point of interest, aside from the dispersion
differences noted in the previous comparison, is predicting such
complex turbulent physics, and this is one of the major advantages
arising from integrating the two models.

8.1. Simulation setup

The bathymetric data and grid system has been organized to
simulate 2004 Sumatra tsunami using the multigrid system in
COMCOT. Fig. 15 shows the initial sea surface elevation induced



Fig. 16. Surface elevation (m) in all layers at time = 730 min. The lower row shows the output from Layer 5, the Boussinesq model, of the free surface elevation (left) and
vorticity (1/s) (right).
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by the 2004 Sumatra earthquake within the entire computational
domain, covering from (45�E, �10�N) to (105�E, 30�N). Open ocean
bathymetry and topography is taken from the GEBCO database,
while shallow bathymetry off the coast of Oman is taken from dig-
itized nautical charts. The parent domain, numbered Layer 1, has 4
subdomains given as Layers 2 through 5; higher numbered grids
are nested within lower numbered grids. Layer 3, for example, is
nested within Layer 2, and has a finer grid size and smaller time
step. All the parameters necessary for simulation are listed in
Table 2. From Layer 1–4, COMCOT is applied. Near Port Salalah in
Oman (Layer 5), the main area of interest, the Boussinesq model
with the highest grid resolution is applied in order to capture local
and turbulent dynamics, such as vortices, inside the harbor. It is
worthwhile to note that the grid resolution is decreased by a factor
of 400 from Layers 1 to 5. Additionally, a readily calculated maxi-
mum stability index value, c, is 0.8, assuming that the nonlinearity
(�) and water depth are the conservative values of 1 and 23 m,
respectively. While this stability index is near the limit of our
recommended range, the use of the conservative values implies
expected stability for this numerical configuration.

For the generation of an initial surface condition for the
tsunami, the three-subfault-source condition of Wang and Liu
(2006) has been applied; the parameters of which are listed in
Table 3. The runtime of the simulation is set to 830 min of
physical time. Additionally, for the purpose of comparison
between the results with and without coupling, another simula-
tion using only COMCOT has been implemented with the same
configuration except the grid size of Layer 4. In this COMCOT-
only simulation, the grid resolution of layer 4 is set to 9.3 m,
which is the resolution used by the Boussinesq layer in the cou-
pled model.

8.2. Results and discussion

From the simulation result, the first tsunami waves arrive at
Salalah port in Oman (Layer 5) approximately 420 min after the
earthquake. This is comparable to the initial arrival time at the Port
of 433 minutes post-earthquake, as reported by Okal et al. (2006).
Afterward, successive attacks by a long train of tsunami waves
caused a significant disturbance inside and immediately near the
harbor. These disturbances are given in Okal et al. (2006) who
discuss various ship incidents during the tsunami attack. They
reported that a freighter docked at the berth had broken its
mooring lines and drifted in- and outside the harbor, caught in a
complex system of eddies and currents. The coupled model system
appears to be able to represent these chaotic dynamics. Fig. 16
shows one result of sea surface in each layer at 730 min after
tsunami generation, with an extra plot for the vorticity inside the
harbor taken from the Boussinesq layer. Along the breakwater
and coastline, the tsunami generates eddies of various sizes, and



Fig. 17. Vorticity (1/s) evolution inside Oman Salalah harbor at nine different times.
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the flow is chaotic. Vorticity evolution as the tsunami propagates
into the harbor has been reasonably captured by the Boussinesq
model and is depicted in Fig. 17.

A comparison between the vorticity results of COMCOT and the
Boussinesq model is shown in Fig. 18. Eddies are very weakly gen-
erated in COMCOT relative to the Boussinesq model. While bottom
drag, which generates the boundary shear layers that curl up into
the large eddies, are modeled differently in the two models, this
is likely not the reason for the large difference; for a given velocity
the bottom friction from the two formulations will be similar at
this geophysical scale. The most likely cause of this large difference
is the numerical truncation error of the upwind differencing in
COMCOT, given as variable Er in Section 4.2. This error can be
expressed as:

Er ¼ 0:5ð1� CrÞuDx
o2u
ox2 ¼ mnum

o2u
ox2 ; ð24Þ

and so can clearly be viewed as a diffusion term. For a Cr � 0.5
and flow speeds ranging from 1 to 5 m/s, the numerical eddy
viscosity, mnum, varies from �2 � 10 m2/s. This is a very large
diffusion coefficient, and taken with the expectation that the
velocity curvature is large inside boundary shear layers and ed-
dies, it is evident that the numerical diffusion in the COMCOT
model is driving the large differences in the vorticity patterns.
As the two models predict different eddy patterns, the velocity
predictions inside the harbor will be equally varied. Specifically,
with the large and interacting eddies predicted by the coupled
model, the simulated velocities are much larger. This kinematic
aspect is of great importance to harbors during tsunamis, as it
is the currents that lead to drag forces great enough to snap
mooring lines, and transport large freighters as randomly
meandering ‘‘ghost’’ ships. If one is interested in simulating these
rotational features, numerical errors from low-order upwinding
should be avoided.
9. Conclusion

For the purpose of seamlessly modeling tsunami evolution
from generation to inundation with fine scale resolution, without
the loss of important physics, a two-way coupled model for tsu-
nami simulation has been developed. The two components are
the shallow-water solver COMCOT and a dispersive, turbulent,
and rotational Boussinesq model. A general framework in which
the coupled model is implemented is as follows: Since COMCOT
is well designed for generation and propagation of a tsunami in
the open ocean, it will be responsible for the computation of
oceanic evolution. On the other hand, the final stage of tsunami
life, including nearshore dynamics such as inundation, nonlinear
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wave interactions, steep bore fronts, and turbulent activity, will
be described by a fully nonlinear Boussinesq-type model. The
Boussinesq model that can describe nearshore evolution of a tsu-
nami with high physical detail is designed to be located flexibly
within COMCOT as a nested layer.

As coupling of two heterogeneous models may result in unde-
sirable errors, a general benchmark test has been completed
with various conditions provided for validity of the coupled
model application. With regard to stability and accuracy, the
simulation output is evaluated and general guidance for the cou-
pled models application space has been presented; the so-called
stability index c should be <0.9. As a further validation of the
coupled model in the nearshore region, long wave propagation
onto a shallow shelf has been examined and compared with lab-
oratory data. Distinct dispersive effects at the leading wave front
have been observed through use of the Boussinesq model, which
demonstrates that near coastal areas, dispersive effects may be
locally important.

Finally, a recent tsunami event, the 2004 Sumatra tsunami, has
been simulated with a far field focus on the Port of Salalah. The
coupled model has successfully simulated various sizes of eddies
generated by the tsunami through turbulence activity. The results
are further supported by observations addressed in Okal et al.
(2006). It is found that one needs to be very careful when using
numerical solution schemes with leading order diffusion errors
to predict such rotational features, as this numerical error can
rapidly remove intense shear layers and strong eddies from the
current field.
Fig. 18. Comparison of vorticity (1/s) evolution by Boussinesq-coupled model (left)
and COMCOT-only (right).
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Appendix A. Numerical scheme of COMCOT

The numerical solution scheme employed by COMCOT is the
explicit leap-frog difference method. Nonlinear terms in the
model are approximated with upwind finite differences. The final
forms for the continuity and momentum equations are described
below:
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� Dt
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64

3
75;
ð27Þ
where the coefficients of the upwind scheme are obtained by
k11 ¼ 0; k12 ¼ 1; k13 ¼ �1; if Mn
iþ1=2;j P 0;

k11 ¼ 1; k12 ¼ �1; k13 ¼ 0; if Mn
iþ1=2;j < 0;

2
4

k21 ¼ 0; k22 ¼ 1; k23 ¼ �1; if Nn
iþ1=2;j P 0;

k21 ¼ 1; k22 ¼ �1; k23 ¼ 0; if Nn
iþ1=2;j < 0;

2
4

k31 ¼ 0; k32 ¼ 1; k33 ¼ �1; if Mn
i;jþ1=2 P 0;

k31 ¼ 1; k32 ¼ �1; k33 ¼ 0; if Mn
i;jþ1=2 < 0;

2
4

k41 ¼ 0; k42 ¼ 1; k43 ¼ �1; if Nn
i;jþ1=2 P 0;

k41 ¼ 1; k42 ¼ �1; k43 ¼ 0; if Nn
i;jþ1=2 < 0:

2
4

Bottom friction terms are given as:
mx ¼
1
2

gm2

Hn
iþ1=2;j

� �7=3 Mn
iþ1=2;j

� �2
þ Nn

iþ1=2;j

� �2
� �1=2

; ð28Þ

my ¼
1
2

gm2

Hn
i;jþ1=2

� �7=3 Mn
i;jþ1=2

� �2
þ Nn

i;jþ1=2

� �2
� �1=2

: ð29Þ
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Appendix B. Parameters in Boussinesq model

B.1. 2nd order terms in Boussinesq equation
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5; ð30Þ
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where r = (o/ox,o/oy), S =r � Ua, T =r � (hUa) and w ¼ sb=fqmv
t

ðfþ hÞg. Also �n ¼ ðnx; nyÞ and nm ¼ ðnmx
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and (wx,wy) = w.

B.2. Variables in numerical scheme

E ¼ ELO þ ED þ EV ; ð38Þ

F ¼ FLO þ FD þ Ua ED þ EVð Þ; ð39Þ

G ¼ GLO þ GD þ Va ED þ EVð Þ; ð40Þ
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and ED, EV, FD, GD, F1 and G1 are defined as:
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Fp
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