
Computer Physics Communications 248 (2020) 106966

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Celeris Base: An interactive and immersive Boussinesq-type nearshore
wave simulation software✩

Sasan Tavakkol ∗, Patrick Lynett
Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA, USA

a r t i c l e i n f o

Article history:
Received 20 July 2019
Received in revised form13 September 2019
Accepted 25 September 2019
Available online 28 September 2019

Keywords:
Celeris
Boussinesq
Wave modeling
Immersive
Interactive
GPU

a b s t r a c t

We introduce our interactive and immersive coastal wave simulation software, Celeris Base, which is
the successor to Celeris Advent. Celeris Base is an open source software developed in the Unity3D
game engine and in C# language. It supports an interactive environment and allows users to view
the simulations in a virtual reality headset. Celeris Base solves the same equations as Celeris Advent,
the extended Boussinesq equations, using our hybrid finite volume–finite difference method. These
equations are solved on the GPU using compute shaders, written in HLSL. Celeris Base has several
new features such as 360◦ video capturing, geographic map overlays, built-in real-time gauge plotters,
etc. It also improves the implementation of the sponge layer boundary condition by introducing new
damping equations. Celeris Base is designed and implemented using the best software engineering
practices in the hope that it will be a base for further developments of the Celeris software series by
researchers around the globe. We validate Celeris Base against experimental results in this paper.
Program summary
Program Title: Celeris Base
Program Files doi: http://dx.doi.org/10.17632/jdx7tddcxz.1
Licensing provisions: MIT License
Programming language: C#, HLSL
Nature of problem: Celeris Advent enabled researchers and engineers for the first time to simulate
nearshore waves with a Boussinesq-type model, faster than real-time and in an interactive environ-
ment. However, its development platform and implementation complexity hindered researchers from
developing it further and made adding new features to the software a daunting task. The software used
graphics shaders to solve scientific equations which could be confusing for many. The visualization
environment was wired from scratch which made it very difficult to add features such as virtual
reality.
Solution method: A new software is developed completely from scratch following Celeris Advent, called
Celeris Base. This software uses the same hybrid finite volume–finite difference scheme to solve the
extended Boussinesq equations, but using a variant of shaders called compute shaders, removing
possible barriers for other researchers to understand the code and develop it further. The software is
developed in Unity3D, a popular game engine with a large and helpful community as well as thousands
of ready to use plugins. Celeris Base is equipped with virtual reality and is the first nearshore simulation
software to provide this feature.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Recent disastrous hurricanes such as Hurricane Sandy (2012),
Hurricane Harvey (2017), and Hurricane Michael (2018) and
catastrophic tsunamis such as the Tohoku Earthquake and

✩ This paper and its associated computer program are available via the
Computer Physics Communication homepage on ScienceDirect (http://www.
sciencedirect.com/science/journal/00104655).

∗ Correspondence to: Google Research, New York, NY, USA.
E-mail address: tavakkol@usc.edu (S. Tavakkol).

Tsunami in Japan (2011), Sulawesi Earthquake and Tsunami
(2018), and Sunda Strait Tsunami (2018) have raised the global
awareness for the urgent need to understand the response of
developed coastal regions to tsunamis and wind waves. While
aspects of these natural disasters are unpreventable, the fol-
lowing catastrophes can be avoided by careful engineering and
thorough simulations [1]. Numerical simulations are, arguably,
the best tools that engineers can utilize to design safer struc-
tures or to predict the risk of coastal disasters before they hit
the coast. However, the supercomputing facilities required to

https://doi.org/10.1016/j.cpc.2019.106966
0010-4655/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cpc.2019.106966
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2019.106966&domain=pdf
http://dx.doi.org/10.17632/jdx7tddcxz.1
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:tavakkol@usc.edu
https://doi.org/10.1016/j.cpc.2019.106966

2 S. Tavakkol and P. Lynett / Computer Physics Communications 248 (2020) 106966

run high-order and accurate numerical simulations are expen-
sive and mostly exclusive to large government organizations
and universities. Furthermore, utilizing these models requires
researcher-level skills often not available in small engineering
firms. We defined the Celeris research project to overcome these
issues with the following mission statement:

Democratizing high-order and high-performance coastal wave
modeling by leveraging the GPU in a user-friendly software and
modernizing it by leveraging the state-of-the-art visualization
technologies [2]

We developed Celeris Advent, the first faster than real-time
and interactive Boussinesq-type wave model, and introduced it
in an article published in 2017 [3]. Celeris Advent is a tremen-
dously fast Boussinesq-type wave solver running on the GPU,
with a compelling 3D visualizer and an interactive environment.
It runs on off-the-shelf Windows laptops, eliminating the need
for expensive supercomputing facilities. Celeris Advent has been
downloaded over 2000 times from users spanning 50+ countries
and its user’s manual is translated to several languages by in-
dependent users. This software is now widely used in research,
education, and engineering projects. As an example use case, we
developed a website that provides a five-day forecast of wave
conditions at several US coasts by periodically running Celeris
Advent. This website is available at http://coastal.usc.edu/waves/.

Celeris Advent is developed in C++ and HLSL using the
Direct3D framework. While such a native development envi-
ronment has some advantages such as, potentially, a higher
performance, it is not without drawbacks. The main issue that
we encountered was the difficulty of adding new features to
the software. Furthermore, Celeris Advent was developed with
a focus on the core scientific functionality and less attention
to recommended software architectural patterns such as mod-
ularity and other object-oriented programming best practices.
Finally, we observed that other researchers were not successful
in developing the software further or even recompiling it after
a year passed from the initial release of the open source code,
perhaps due to its complexity. These issues made us to revamp
the software.

Celeris has a lot in common with video games, for example,
GPU accelerated physics, attractive visualization, and interactiv-
ity. Therefore, we redeveloped Celeris Base from scratch in a
game engine called Unity3D. This redevelopment has a lot of
advantages. There are hundreds of ready to use libraries (called
‘‘assets’’) available to download or purchase on Unity3D Asset
Store which can help adding new features to the software, such
as virtual reality (VR) capabilities. We did not use the physics
engine of Unity3D and developed our own engine for the wave
simulation based on the same equations used in Celeris Advent.

Using a popular development platform such as Unity3D pro-
vides developers with community support which was not avail-
able for Celeris Advent. Furthermore, we paid more attention to
software design in the revamped software and employed state-
of-the-art engineering practices to develop a modular codebase.
We are optimistic that these features and the introduced ease of
development will make scientists and researchers embrace the
software as a base for further developments; hence, we call the
new series of our simulation software, Celeris Base.

The key difference between Celeris Base and Celeris Advent
is in their implementations. Celeris Base is developed in Unity3D
using C# while Celeris Advent is developed in C++. The compu-
tations are done, in both software, using shaders, but we used a
different kind of shaders in Celeris Base, called compute shaders.
As the naming suggests, these shaders are designed to handle
computations, unlike the regular shaders used in Celeris Advent,

which are designed to render graphics. Compute shaders are also
written in HLSL, however, there is no need to build a dummy
graphics pipeline to run them. They can be simply run on the
GPU using a ‘‘Dispatch’’ call. This makes them suitable for gen-
eral purpose programming and make it easier for scientists and
researchers to understand the code. For visualizations, we use
regular shaders in Celeris Base just like Celeris Advent, though
Unity3D shaders are written in a variant of HLSL. Furthermore,
we paid more attention to the software architecture of Celeris
Base and used recommended techniques in object-oriented pro-
gramming such as polymorphism, design patterns, dependency
injection, etc. This careful engineering makes the software a true
base for further developments. Finally, Celeris Base has several
new features compared to Celeris Advent. For example, the user
can put a gauge on a point to show the water surface diagrams
in real time or they can record a 360◦ video of the experiment
(e.g., https://youtu.be/tJeGviPzwEs). We also discuss how Celeris
Base can be configured to support virtual reality.

Although Celeris Base is a significant improvement upon
Celeris Advent from a developers-perspective, it is not meant
to replace it. Celeris Advent has a few features that are not yet
implemented in Celeris Base. As mentioned before, our goal of de-
veloping Celeris Base was making it easier for other researchers to
develop the code further. For practical use cases, we recommend
researchers to continue using Celeris Advent until new versions
of Celeris are developed on top of Celeris Base. Celeris Base is
also released as an open source software under the permissive
software license, MIT license. The third-party libraries used in
Celeris Base have their own corresponding licenses.

2. Mathematical model

The Boussinesq-type equations are a powerful tool for the
study of nearshore dynamics, including both nonlinear and dis-
persive effects. A significant effort in the nearshore wave model
community towards developing Boussinesq models has occurred
in the past decades [4,5]. Assuming that both nonlinearity and
frequency dispersion are weak and are in the same order of mag-
nitude, Peregrine [6] derived the ‘‘standard’’ Boussinesq equations
for variable depth in terms of the depth-averaged velocity and
the free surface displacement. Numerical results based on the
standard Boussinesq equations or the equivalent formulations
have been shown to give predictions that compared quite well
with field data and laboratory data. Many modified forms of
Boussinesq-type equations have been introduced (e.g., [7–9]) to
extend the validity zone of these equations.

FUNWAVE [9] and COULWAVE [10] are examples of success-
ful and widely used numerical implementations of the highly-
nonlinear Boussinesq-type equations. These models have been
applied to a wide variety of topics, including rip and longshore
currents [11], wave runup [12], wave–current interaction [13],
and wave generation by underwater landslides [14], among many
others. While these high-order models provide a better represen-
tation of physical processes in theory, they can suffer from two
important drawbacks. First, as the second-order corrections be-
come more complex, the computational requirements, and thus
time, to solve the system substantially increases. Often for prac-
tical cases, simulations using these models run at a fraction of
real time on hundreds of cores. Secondly, while it can be clearly
shown that the high-order models do agree better with analytical
solutions and controlled laboratory experiments, the impact of
these corrections becomes blurred for application in real field
cases. The inherent errors and uncertainties when hindcasting or
forecasting a field site can overwhelm the high-order corrections.
In these cases, there is little, if any, practical justification for
using a high order and computationally expensive model. Bear-
ing these facts in mind, we adopted the extended Boussinesq

http://coastal.usc.edu/waves/
https://youtu.be/tJeGviPzwEs

S. Tavakkol and P. Lynett / Computer Physics Communications 248 (2020) 106966 3

equations [15] which are only weakly nonlinear, yet, accurate
enough for practical cases. The interested readers can learn more
about different kinds of Boussinesq-type models and inter-model
analyses in references such as [4,16]. Discretized by a hybrid
finite volume–finite difference (FVM–FDM) scheme, we found the
extended Boussinesq equations very robust to use in Celeris as a
fast and interactive solver. These equations for 2DH flow read as:[h
P
Q

]
t

+

⎡⎣ P
P2/h + gh2/2

PQ/h

⎤⎦
x

+

⎡⎣ Q
PQ/h

Q 2/h + gh2/2

⎤⎦
y

+

[0
ghzx + ψ1 + f1
ghzy + ψ2 + f2

]
= 0 (1)

where h is the total water depth, P and Q are the depth-
integrated mass fluxes in x and y directions respectively (x-y
plane makes the horizontal solution field). Subscripts x and y
denote spatial differentiation, and subscript t denotes temporal
differentiation. z is the bottom elevation measured from a fixed
datum. f1 and f2 are the bottom friction terms and g is the
gravitational acceleration coefficient. ψ1 and ψ2 are the modified
dispersive terms defined as:

ψ1 = −

(
B +

1
3

)
d2

(
Pxxt + Qxyt

)
− Bgd3

(
ηxxx + ηxyy

)
− ddx

(
1
3
Pxt +

1
6
Qyt + 2Bgdηxx + Bgdηyy

)
(2)

− ddy

(
1
6
Qxt + Bgdηxy

)

ψ2 = −

(
B +

1
3

)
d2

(
Pxyt + Qyyt

)
− Bgd3

(
ηyyy + ηxxy

)
− ddy

(
1
3
Qyt +

1
6
Pxt + 2Bgdηyy + Bgdηxx

)
(3)

− ddx

(
1
6
Pyt + Bgdηxy

)
where d is the still water depth and η is the water surface
elevation measured from the still water surface elevation. B is the
calibration coefficient for dispersion properties of the equations.
We use B = 1/15 as suggested in the original article [7] intro-
ducing the extended Boussinesq equations and widely adopted
thereafter.

3. Numerical model

We discretize the extended Boussinesq equations using a hy-
brid FVM–FDM explained in [3] and referred to as TL17. This
scheme is developed following [17] by rearranging the terms
such that we can rewrite Eq. (1) as ODE’s in time. Then, fol-
lowing [18,19] we use a hybrid FVM–FDM discretization to solve
these equations on a uniform Cartesian grid. The spatial domain
is discretized by fixed-size rectangular cells of ∆x × ∆y. Each
cell is a control volume for the FVM discretization, while the
cell centers and their corresponding cell averages are used as the
grid points in FDM. The advective terms are discretized using a
second-order well-balanced positivity preserving central-upwind
scheme introduced in [20], known as KP07, which is a FVM to
solve the Saint–Venant system of shallow water equations. The
rest of the terms are discretized using second order central FDM.
Time integration is performed by the third-order fixed timestep
Adams–Bashforth scheme.

Celeris Base, similar to Celeris Advent, does not have a direct
treatment for wave breaking. However, our numerical experi-
ments show that the numerical dissipation incorporated in the

Fig. 1. Diagram of γ (α), Eq. (4), inside the sponge layer.

FVM model using a minmod limiter, successfully imitates the
wave breaking. Kirby et al. [21] also discuss that in models with
shock-capturing schemes the implementation of an explicit for-
mulation for breaking wave dissipation might be unnecessary.
MOST model is another example in which numerical dissipation
mimics wave breaking [22,23].

3.1. Boundary conditions

We add two layers of ghost cells at each side of the solutions
field to implement the boundary conditions. This number agrees
with the size of the numerical stencil. Four types of boundary
conditions are implemented in Celeris Base: fully reflective solid
wall, sinewave maker, sponge layer, and irregular wavemaker.
These boundary conditions can be applied to any of the four
boundaries of the field, either from the GUI or from the input
file. The implementations of solid walls and sinewave maker are
explained in [3] and the irregular wavemaker is discussed in [24].
They all follow their implementations in Celeris Advent. However,
we improved the sponge layer implementation in Celeris Base
which we discuss next.

3.1.1. Sponge layer
The sponge layer boundary condition in Celeris Base is an ad-

justed version of the method introduced by Tonelli and Petti [19]
and used in Celeris Advent. The implementation proposed in [19]
was done in Celeris Advent by multiplying the values of η, P, and
Q by a damping coefficient, γ (α), defined as

γ (α) =
1
2

(
1 + cos

(
π
Ls − D (α)

Ls

))
(4)

where α is substituted with x or y for boundaries perpendicular to
the x-axis or y-axis, Ls is the width of the sponge layer, and D(α)
is the normal distance to the absorbing boundary. The damping
is only applied to the cells which are located inside the sponge
layer. Fig. 1 shows the value of γ (α) inside the sponge layer.

Tonelli and Petti [19] do not clarify whether this coefficient
is applied every time-step, or in certain time intervals. We im-
plemented this method in Celeris Advent v1.0.0, applying the
coefficient on the flow parameters every time-step and observed
that this implementation has an undesired steep damping effect
causing spurious reflections. Applying this coefficient in every
timestep has a compound effect in damping the waves. Consider
the crest of a solitary wave with waveheight of H0 on the edge of
a west-side sponge layer and ready to enter the damping area. In

4 S. Tavakkol and P. Lynett / Computer Physics Communications 248 (2020) 106966

the first time-step that the crest of the wave enters the sponge
layer, it gets damped by γ (Ls − δ), where δ is the distance of
the crest from the edge of the sponge layer. This is equal to the
distance the wave has traveled in one timestep, ∆t. In the next
time step, the already damped crest gets further damped by an
even smaller coefficient of γ (Ls−2δ). This compound effect makes
the crest of the wave to diminish very quickly. The damping rate
in this implementation is a function of the timestep size, and
it is higher for smaller timesteps, which is not expected from a
well-behaved sponge layer.

The correct approach is to damp the waveheight (and other
flow parameters) such that the locus of the wave crest follows a
shape similar to the one shown in Fig. 1. To achieve this goal the
flow parameters must be multiplied by a coefficient, like λ(α),
at each time-step, such that the compound effect of this new
coefficient resembles the shape of γ (α). In other words:

γ (Ls − nδ) =

n∏
i=0

λ (Ls − iδ) (5)

We can write:

γ (Ls − nδ) = λ (Ls − nδ)× γ (Ls − (n − 1) δ) (6)

or

λ (Ls − nδ) =
γ (Ls − nδ)

γ (Ls − (n − 1) δ)
(7)

Substituting Ls − nδ with a newly defined variable such as α, we
have:

λ (α) =
γ (α)

γ (α + δ)
(8)

As mentioned earlier, δ is the distance the wave crest travels in
∆t. Therefore, assuming the wave celerity, c, we have:

λ (α) =
γ (α)

γ (α + c∆t)
(9)

Eq. (9) shows that the damping coefficient for each wave
depends on its celerity and therefore an ideal sponge layer must
treat each wave frequency differently, which cannot be easily
achieved. As a reasonable approximation, we use c =

√
gd for c in

Eq. (9) and damp the flow parameters by λ(α) at each time-step.

4. Software documentation

4.1. Source files

A Unity3D project generally consists of several folders and
hundreds of files, however, the Assets folder is the one which
contains most of the important files. Under the Assets folder of
Celeris Base, the Celeris folder contains most of the code done
to build the software. Fig. 2 shows the directory paths and files
in each subdirectory of this folder. The Scripts folder hosts most
of the codes written to create the solver and rest of the soft-
ware. Most of the files implement only one class which handles
one specific action or feature in the software. The main flow of
the software is controlled by GameManager.cs. The Boussinesq
solver is driven by TL17Driver.cs. There is also a driver for
an NLSW solver, called KP07Driver.cs. Both driver classes are
derived from a base class implemented in KP07Base.cs. The
base class contains the codes to solve the common advective
terms between the two solvers. This base class itself is a derived
class of Solver.cs, which connects the solver classes to the
rendering infrastructure and compute shaders. The Solver class
also contains shared features such as logging. It also implements
virtual functions such as TimeStep() which are overridden by the
child classes.

Two main compute shaders, TL17.compute and
KP07.compute, contain the kernels (GPU codes) for the Boussi-
nesq and NLSW solvers, respectively. These two files import
(include) a compute shader, called base_KP07.compute, which
like the driver classes, contains the common kernels between
two algorithms. Furthermore, each main compute shader includes
other compute shaders such as time_integration.compute,
tools.compute, etc.

The folder GPGPU contains the rendering shaders and non-
solver compute shaders. The rendering shaders have a .shader
extension and may import files ending in .cginc. Shaders are
applied to objects through files called ‘‘Material’’, which are in
the Materials folder. The entry point in Unity3D projects is called
‘‘scenes’’. The only scene in Celeris Base is Main.unity which
should be opened from the Unity3D editor to start and run the
software in development mode.

4.2. Implementation

Unity3D is a popular game engine which provides the devel-
oper with a rendering engine, scripting support, etc. along with a
powerful visual editing tool. Most of the contents in a Unity3D
project, such as an avatar, the camera, a popping sound, the
logic, etc. are instances of the GameObject class. The behavior of a
GameObject instance is defined and controlled by its Components.
For example, a piece of code must be attached to the camera
GameObject, as a Component, to control its movement.

The entry point to a Unity project is a scene. A scene is the
collection of all the GameObjects, Components, and their connec-
tions. Unity scenes are written in YAML (rhymes with camel),
which is a data serialization language. The number of lines in
the aggregated YAML file of Celeris Base is over 140,000. Luckily,
one rarely, if at all, needs to edit the YAML files of a scene.
Instead, Unity3D has a visual editor where all these objects and
their relationship are shown and can be edited. Unity3D 2018 for
windows comes with the Visual Studio 2018 as the IDE. Unity3D
supports C# as its main programming language, which is used in
Celeris Base.

4.2.1. Structure
With the brief explanation of the Unity3D game engine, we

can now discuss the structure of the Celeris Base scene. There
are four major GameObject’s in the scene: Main Camera, Game-
Manager, Engine, and Canvas. The Main Camera renders what the
user will see in the field. A few components are attached to this
object, where the most important one is a script to control the
movement of the camera by the user.

GameManager drives the software flow. This object also has
several components, but the most important one is a script called
GameManager.cs. The GameManager class uses the singleton
design pattern, which means that only one instance of the class
can exist. This is useful for GameManger to act as the sole coordi-
nator of actions across the system. Furthermore, the one possible
instance of the class is easily accessible from other classes just
by calling the static public property of the class called ‘‘Instance’’.
GameManger defines the entire framework of the software, such
as the CML loader, solver, rendering infrastructure, etc. It also
contains the ‘‘Update’’ function, which is called every frame to
run the solver for a pre-defined number of steps.

The Engine GameObject is the rendering engine of Celeris Base.
It has several children (sub-objects) to take care of rendering the
water surface and the terrain. We will explain this object in more
detail in the coming sections. Canvas is a GameObject that all UI
elements must be a child of. Canvas always has the EventSystem
object which takes care of the messaging system. Several scripts
are attached to the UI elements to apply the required logic.

S. Tavakkol and P. Lynett / Computer Physics Communications 248 (2020) 106966 5

Fig. 2. Some of the important source files in Celeris Base.

For example, a script called ‘‘BoundaryPanelScript’’ is attached
to the boundary tab UI element, which connects the GUI to the
simulation engine. It takes the values of the parameters for the
boundary from the GUI and updates the simulation parameters
accordingly.

4.2.2. Solver
Celeris Base has two fluid dynamics models, one for solv-

ing the NLSW equations and one for the extended Boussinesq
equations. The NLSW solver is based on a finite-volume model
developed by Kurganov and Petrova (2007) [21], and therefore
called KP07. Our Boussinesq solver, as introduced in [3], is call
TL17.

Celeris Base has a core Solver class which is implemented
in Solver.cs and defines the foundation for running a model
on the GPU. For example, RenderTexture’s are defined in this
class. It also has methods to hook the simulation parameters
(coming from a CML file) to the model as well as data log-
ging functions. However, it does not implement the functions
to solve any equations. It is in fact, a parent class with a vir-
tual TimeStep() method which should be overridden by a child

class implementing this function and solving the motion equa-
tions. As explained before, TL17 uses KP07 to solve the advective
terms of the extended Boussinesq equations and therefore the
NLSW and Boussinesq solvers share several functions. We refac-
tored the common functions of the two models into a class
called KP07Base which inherits from Solver. Two classes called
TL17Driver and KP07Driver are derived from KP07Base to handle
their corresponding models.

Fig. 3 shows the UML diagram of Solver, KP07Base, KP07Driver,
and TL17Driver classes. Some major or representative variables
and methods are shown in this diagram, as well as the inheritance
hierarchy. The Solver class has a reference to a ComputeShader,
called Compute, which is set to either a KP07 or TL17 compute
shader by the subclasses. It also has an instance of a Compute-
Shader called renderComputeShader, which connects the model
results to the visualization tools. The simTextureManager, hosts
all the RenderTexture’s in the software and takes care of creating
and destroying them as necessary to prevent memory leaks.

The KP07Base class defines the shared functions between KP07
and TL17 models to solve the advective terms. For example, pass1

6 S. Tavakkol and P. Lynett / Computer Physics Communications 248 (2020) 106966

Fig. 3. Class UML diagram of Celeris Base solvers.

and pass2 functions take care of reconstructing physical values
and computing fluxes at cell interfaces. It also implements the
time integration algorithms as virtual functions. This class de-
fines, implements, and applies all the boundary conditions in the
software. Furthermore, it handles bathymetry as well as applying
the initial conditions such as solitary waves.

KP07Driver is a relatively thin class derived from KP07Base. It
defines the final step in solving the NLSW equations as a function
called pass3, which sums up the fluxes and source terms to
calculate the time derivatives of the flow parameters. It also im-
plements the TimeStep function by calling pass1, pass2, pass3 and
then a time integration method. TimeStep also calls the bound-
aryCondtion and the base TimeStep functions from KP07Base.

TL17Driver is the class which drives the TL17 model and solves
the extended Boussinesq equations. It implements a function
called pass3 which, similar to KP07Driver, aggregates the re-
sults from pass2 with source and dispersive terms. The class also
defines crucial functions such as those to solve the tridiagonal
matrices using the cyclic reduction algorithm. TL17Driver over-
rides the time integration functions to add the necessary changes,
yet calls the base time integration functions within. Finally, it
implements the TimeStep function by calling pass1, pass2, pass3,
time integration, and tridiagonal solver functions. Note that all
the computational functions in the Solver class and its children,
are drivers to run compute shaders on the GPU, and do not
implement any CPU solutions.

4.2.3. Compute shaders
Celeris Base has a key difference with Celeris Advent in lever-

aging the power of GPU. We use compute shaders in Celeris
Base, in contrast to pixel shaders that we used in Celeris Advent.
Compute shaders are very similar to pixel shaders in language
and syntax, however they are designed for the primary pur-
pose of computation and therefore fit better for our purpose.

Unlike using pixel shaders for general purpose programming,
which requires setting up a dummy graphics pipeline, driving the
compute shaders is simply done with a function called Dispatch.
Compute shaders of Unity3D closely match Microsoft’s Direct-
Compute technology. They also have some similarities with the
CUDA programming language which perhaps is more popular in
the coastal engineering research community. We hope that using
compute shaders instead of the pixel shaders in Celeris Base will
remove the barriers for coastal researchers to further develop the
mathematical and numerical model of the software.

All the files with the extension of .compute are compute
shaders. Most of them are located at Assets/Celeris/Scripts/Solver/
Shared folder. These compute shaders implement the shared
functions between TL17 and KP07 models, which, themselves, are
implemented in TL17.compute and KP07.compute files.

4.2.4. Rendering mesh generation
One of the challenges in developing Celeris Base was rendering

the wave and terrain surfaces. Unity3D allows mesh generation
from heightmaps, however, it only takes square shapes, i.e., a
heightmap with equal number of grid points in x and y directions.
The generated mesh can be scaled independently in x and y
directions to form a rectangle, however, for shapes with larger
difference in number of grid points, the precision of the mesh
in one direction need to be either sacrificed or overloaded. To
overcome this limitation, we adapted a visualization system from
a commercial library called Surface Waves by Code Animo. Al-
though this library was designed to render only square domains,
it had many useful tools which helped us design and implement
our own surface rendering tools.

In Celeris Base, we tile a rectangular grid with smaller square
grids of size 128 × 128, and then slightly scale up the squares
in one direction to fit the domain. Fig. 4 shows this infrastructure

S. Tavakkol and P. Lynett / Computer Physics Communications 248 (2020) 106966 7

Fig. 4. Rendering infrastructure in Celeris Base with disassembled tiles.

Fig. 5. Textures of grid (a), jet colormapping (b), and terrain colormapping (c), used in Celeris Base renderings.

for a rectangular domain with disassembled tiles for a better illus-
tration. The number of squares in each direction is calculated by
dividing the number of simulation cells in that direction (i.e., nx
or ny) by the size of square tiles (i.e., 128), and then rounding the
result to the nearest integer number. To avoid low visualization
resolution, we use at least two tiles in each direction. This system
introduces a new challenge: the number of the grid points in the
underlying computational model differs from the number in the
rendering infrastructure, and therefore there is not a 1:1 match
between the mathematical mesh and visualization mesh in the
software. We solve this problem by defining a linear UV mapping
between two meshes and sampling the compute textures for
visualization purposes.

4.2.5. Shading and materials
Rendering in Unity3D is done by using materials, shaders and

textures. Materials are components attached to a GameObject
with a mesh component that define its rendering properties. A
material has references to the textures it uses, tiling information,
color tints, etc. It also uses a shader which takes care of the math
of calculating the color of each pixel. A shader normally takes
one or more textures as its input and uses them for calculating
the surface color. Celeris Base uses several materials, shaders,
and textures to deliver its vivid visualization. We briefly explain

photorealistic and colormap shading in this section and leave
rendering the geographic map of the domain to the next section.

Shaders in Celeris Base are used for more than just coloring the
pixels. We use vertex shaders to displace the mesh points every
frame to create the water surface. The vertex shader is where the
sampling which we mentioned in the previous section happens.
The vertex shader runs for each vertex of the visualization mesh
and samples the water surface texture (populated by compute
shaders) to displace the vertex according to the water surface
elevation.

Photorealistic shading in Celeris Base is done by the photo-
realistic.shader file, which is attached to the SimpleWa-
ter.mat material. This shader adds the effects from light and
skybox reflection to the albedo color of a pixel. It also has a
reference to a grid texture (Fig. 5a). This grid texture is sam-
pled, scaled, color reversed, and then added to the pixel’s color
to render the grid visual effect in Celeris Base. Fig. 6 shows a
scene rendered with the photorealistic shader with two different
skyboxes and two grid modes.

Colormapping is also done using surface shaders. Two col-
ormapping shaders exist in Celeris Base: WaterColormap.
shader for the water surface and TerrainColormap.shader
for the terrain. In colormap shaders, a colormapped texture is
given to the shader as an input. For example, Fig. 5b shows the jet

8 S. Tavakkol and P. Lynett / Computer Physics Communications 248 (2020) 106966

Fig. 6. Sample photorealistic rendering in Celeris Base with different sky and grid options; this figure is consisted of four snapshots stitched to each other.

colormap used for shading the water surface according to a flow
variable and a linear mapping specified by max and min values.
In water colormapping, the shader gets the value of the shading
variable from the vertex shader (e.g., water surface elevation),
then calculates the UV coordinates from

U =
C − Cmin

Cmax − Cmin
; V = 0.5 (10)

where C is the value of the shading variable. Since the given
textures are constant in the V direction, any value between 0 and
1 can be used for V. These UV coordinate values are then used
to sample the color from the colormapping texture. The terrain
colormap works similarly with a subtle difference. In case of the
terrain, two distinct linear mapping functions are used for heights
above and below the sea level. Eq. (11) shows the equations
used to calculate the U and V values in the terrain colormapping
shader. Terrain colormapping shader takes the texture shown in
Fig. 5c as an input.⎧⎪⎪⎨⎪⎪⎩
U =

C − Cmin

Cmin
, C ≤ 0

U =
C

Cmax
, C > 0

; V = 0.5 (11)

4.2.6. Map rendering
Celeris Base has a new feature which enables it to automati-

cally download the geographic map of the simulation location and
render it on the terrain. To specify the geographic location of the
simulation, the latitude and longitude of the center of the field
must be given in the CML input file. The map of the location is
then downloaded by sending a request to the Google Maps Static
API. This API takes several variables to set the visual effects of
the map along with the latitude and longitude of the map center
and its zoom level. Celeris Base must calculate the required zoom
level such that the retrieved image covers the entire simulation
field, and then crop the image appropriately. To explain how we
implemented these calculations in Celeris Base, we first need to
explain how web-based geodatabases map the spherical earth
surface on a cylinder.

All the major web map services (e.g., Google, Bing, Open-
StreetMap, etc.) use a mapping technique called Web Mercator
(or Google Web Mercator) which is a variant of Mercator projec-
tion. This projection maps the locations from a sphere (earth) to a
cylinder. The cylinder is then unwrapped to form the well-known
planar map we see on our screens or mobile phones.

In Celeris Base, a class called GoogleStaticMap handles down-
loading and other calculations related to the geographic maps.
This class is part of a Unity3D asset, Lean Go Maps, developed
by the author and published on the Unity Asset store under the
MIT License. The asset is available at https://github.com/SasanTV/
Lean-Go-Maps.

Let us define the Mx and My as the coordinates in the Web
Mercator such that for the full earth map both coordinates span
from −1 to 1. The following equations map the longitude and
latitude to Mx and My

Mx =
lon
π

(12)

My =
1
π
ln

(
tan

(
π

4
+

lat
2

))
(13)

where lon and lat are longitude and latitude in radians. Since the
Mercator projects poles to infinity, the poles cannot be shown on
the map, and therefore the map is cut off at ±85.051129◦. This
latitude is where we have My = ±1.

The Google Maps Static API receives an integer value called
zoom level. This value is used to calculate the tile size which will
be cropped from the cylinder and returned to the user. If zoom
denotes this value, 2zoom is the total number of the tiles in each
direction. For example, zoom = 0 corresponds to the entire map,
and zoom = 2 divides the full map into 22

× 22
= 16 tiles. Given

the lat/lon of a location and the zoom level, the API calculates
the tile size and returns an image of that size. In Celeris Base, we
do the reverse calculation to find the right zoom level. The first
step in the reverse calculation is finding the lat/lon of corners of
the field by using the haversine formula to convert distances in
meters (width and length) to lon and lat.

After the required zoom level is calculated, Celeris Base as-
sembles and sends a REST request to the Google Maps Static
API. By default, Celeris Base Sends the request for the satellite
imagery map, but it can be configured to request other kinds of
maps. The response is a tile of the map centered in the location
specified in the request. This image is given to a shader defined
in TerrainMap.shader. The shader receives four parameters (two in
each direction) to form a linear UV mapping between the domain
and its geographic map. Remember, the geographic map returned
by Google is larger than the simulation domain. Fig. 7 shows
the geographic map of the coast of Newport, OR, retrieved from
Google Maps Static API by Celeris Base to render the terrain in an
example experiment in the area. Fig. 8 shows this map projected
on the terrain in the simulation.

https://github.com/SasanTV/Lean-Go-Maps
https://github.com/SasanTV/Lean-Go-Maps
https://github.com/SasanTV/Lean-Go-Maps

S. Tavakkol and P. Lynett / Computer Physics Communications 248 (2020) 106966 9

Fig. 7. Geographic map of the coast of Newport, OR, retrieved from Google Maps Static API by Celeris Base.

4.2.7. Mouse pointer gauge
The mouse pointer works like a gauge in Celeris Base, such that

by hovering it over any point in the simulation field, the software
shows the flow parameters and the position of the point in the
field. To find the location of the pointer on the field, the software
casts a ray from the pointer and in the heading direction of the
camera. Then, it calculates the intersection of this ray (a line in
the 3D space) with a horizontal plane placed on the mean sea-
level. There is some error associated with this approach since
the water surface elevation might be lower or higher than the
mean sea-level and therefore the ray intersection with the water
surface does not necessarily match with its intersection with
the mean sea-level plane. However, the error is not significant,
especially since the position of the gauge is also reported using
the same technique, the flow parameters always correspond to
the gauge location, even if the location is not precisely under the
mouse pointer. Finding the exact intersection of the ray and water
surface is computationally expensive and, considering the small
error margin, not practically important. After finding the position
of the mouse pointer on the field, the software reads the flow
data from the textures using the GetPixel method (see Fig. 9).

4.2.8. Buoy
Celeris Base implements an interesting feature, where the user

can deploy a ‘‘buoy’’ in the field and observe the readings from
the buoy for the water height in real time. This feature is im-
plemented using the tools used to implement the mouse pointer
gauge feature. The values read from the GPU at the location of the
buoy using these tools, are then plugged into a third party plotter
asset that is shown on the screen (see Fig. 10). A maximum of five

buoys can be deployed by clicking on the scene. They can also be
removed by clicking on the plotter legend while pressing the Ctrl
button.

4.3. Input and output files

Celeris Base uses the same format for input and output files
as in Celeris Advent. The input setup for a specific experiment
is given as an XML file, which is called the input CML file. The
bathymetry of the domain is given as a text grid file in CBF format.
A CBF file starts with tags which determine the resolution of the
bathymetry. Then a matrix of numbers is followed in which each
row corresponds to the z value of the cells in a row of the solution
field. If the resolutions of the bathymetry (given in the CBF file)
and the experiment (given in the CML file) are different, Celeris
Base will use interpolation.

4.4. Compilation

Unity3D is a cross-platform game engine, and therefore it
can build projects for several platforms. However, using compute
shaders imposes some limitations in building the project for
different platforms. We developed Celeris Base on a Windows
machine with the intention of running it on Windows machines.
Although Unity supports compute shaders on several platforms
there is not a guarantee that Celeris Base will run on all of these
platforms. At the early stages of developing Celeris Base, we
successfully compiled and ran the software on a Linux machine.
We expect that our software can still be built for Linux machines,

10 S. Tavakkol and P. Lynett / Computer Physics Communications 248 (2020) 106966

Fig. 8. Simulation of the coast of Newport, OR, using Celeris Base with rendering the geographic map of the location.

Fig. 9. Mouse pointer acts as a gauge in Celeris Base.

with some minor modifications. We believe that the software can
be built for different platforms and encourage researchers to do
so, but the process will require some necessary changes in the
software. For example, Windows’ DirectX gracefully handles out-
of-bound access in textures by returning zero, while this may
cause a crash on some platforms. Such cases must be found
and removed from Celeris Base to prepare for compilation for
different platforms. To build Celeris for Windows, you should first
set the build platform to ‘‘PC, Mac & Linux Standalone’’ from File
> Build Setting, then, set the target platform to Windows in the
same setting window and build the project.

4.5. Running Celeris Base

Running Celeris Base on Windows is similar to running Celeris
Advent and is done by running the executable file. Celeris Base
first looks at the setting.init file located in the same folder
as the executable file itself, and if a path to a CML file is not
provided, it opens a file browser window, where the user can
select the input CML file. The GUI of Celeris Base also resembles
Celeris Advent, with some minor differences. In order to use the

geographic map feature of Celeris Base, a Google Static Maps API
key must be provided in the GoogleStaticMap.cs file.

4.6. Immersive visualization

Applications of virtual reality (VR) in science span from re-
search in medical sciences and surgery to molecular physics
[25,26]. The most common VR technology uses VR headsets which
generate realistic images, audio and other sensations in accor-
dance with user’s real time movement such that they simulate
a user’s physical presence in a virtual environment. For example,
a user can move in a virtual museum and observe different items,
or with the controllers they can grab objects and interact with the
environment. Despite the existence of several commercial appli-
cations of VR and AR in 3D modeling and design, practical applica-
tions in numerical scientific simulation and visualization are rare.
These novel visualization techniques can significantly help coastal
researchers to have a better understanding of complex processes
in a visual format.

Virtual reality can help coastal researchers and engineers by
taking them into a virtual world where they can interact with the

S. Tavakkol and P. Lynett / Computer Physics Communications 248 (2020) 106966 11

Fig. 10. Deploying virtual buoys in Celeris Base.

waves and observe them in an immersive way. The potential of
such technology is endless. For instance, imagine entering a har-
bor on a boat and experiencing the waves first hand in VR, before
even the harbor is built, or setting up a virtual laboratory with
several flumes and wave tanks where students and researchers
can collaborate. Despite the huge potential of applications of
VR in coastal research, to the best of our knowledge, there is
no prior work in this area. One reason is that developing a VR
coastal simulation software requires super-fast interactive mod-
els, which did not exist before development of Celeris Advent. In
this section we discuss Celeris VR, which is built on top of Celeris
Base and provides the users with an immersive environment. We
demonstrated Celeris VR for the first time in [27] and later in [28].

4.6.1. Implementation
We targeted our software for Oculus Rift headsets, which are

one of the most advanced and popular VR headsets as of 2019.
The VR support in Unity3D is simply enabled by checking a check-
box in Edit > Project Settings > Player. It is not an exaggeration
to assert that integrating VR into Celeris Advent, could have taken
as much time as developing the entire Celeris Base from scratch.
Although, getting started with the VR in Unity3D is simple, there
still is need for some development and integration efforts. For
example, the player movement and interaction in the field using
the controllers need some coding, which can also be eased by
plugging in and modifying ready to use libraries and Unity assets.

4.6.2. Running Celeris VR
Celeris VR looks very similar to Celeris Base, except that it

lets the user mount an Oculus Rift headset, jump into the virtual
world, and move around as a flying object. Fig. 11 shows the
controllers to move the player in the field. The left controller lets
the user move in different directions and the right one lets them
rotate. Note that the user can also rotate their view in the field by
physically rotating in the room, however the rotation controller
helps them to adjust their view and direction of movement eas-
ier. Fig. 12 shows a user (the author) working with Celeris VR,
simulating a coastal area. In this scene, two buoys are deployed
in the field and their real-time plots are shown on the screen.

The immersive environment in Celeris VR provides a unique
experience for users. The feel of presence inside a numerical

Fig. 11. Movement control in Celeris VR.

coastal simulation is unprecedented and it lets the user observe
the coastal phenomenon as if in person, but with the addition
of powerful visualization tools such as buoys, colormapping, etc.
Celeris VR is also released as an open source software and under
MIT License. The external libraries used in the software, carry
their own licenses.

5. Numerical validation

Since Celeris Base uses the same mathematical and numerical
model as Celeris Advent, validations of Celeris Advent can be
accounted for Celeris Base as well. Celeris Advent was validated
for wave and current simulation by the authors in [3,24,29] and
by several independent researchers [30–32]. However, in order
to ensure that we have correctly re-implemented the solver in
Celeris Base, we validate the model against one of the experi-
ments of Briggs et al. [33] for solitary wave interaction around
a conical island which is frequently used to validate numerical
models [12,34–36]. In these experiments, a circular island with
7.2 m base diameter and side slope is located in a 30 m x 25 m
wave tank with 0.32 m depth. We only simulate the case with
target relative wave heights of H/d = 0.20 which has a higher
non-linearity and wave breaking condition, therefore is expected
to be more challenging for a wave model.

Our numerical setup for the conical island experiments con-
sists of a 30 m × 30 m domain with the conical island in the
center and a solitary wave placed as an initial condition near

12 S. Tavakkol and P. Lynett / Computer Physics Communications 248 (2020) 106966

Fig. 12. Simulating a coastal area with Celeris VR.

Fig. 13. Experimental setup of the conical island. The gauge locations are shown by dots and the wave approaches the island from the left.

the west boundary. The west and east boundaries are set to the
sponge layer condition, while the north and south boundaries
are fully reflective solid walls. The domain is discretized by 301
× 301 cells and a timestep of 0.0025 s. Bottom friction is not
applied. The test case is performed with a slightly smaller relative
wave height at H/d = 0.18 which is used in several other studies
such as [12,36], and [35], as it is closer to the wave height ratio
observed downstream of the wavemaker.

Fig. 13 shows the gauges locations in the experimental setup.
Two gauges (#6 and #9) are in front of the island, while one
(#16) is on the side, and one (#22) is behind the island. Figs. 14
and 15 compare the experimental and numerical results for the
time-series at gauges and maximum horizontal runup on the

island, respectively. The initial waveheight and subsequent draw-
down are predicted well in Fig. 14, which is consistent with
numerical results from Celeris Advent [3] as well as results from
other Boussinesq-type solvers [12,34–36]. The maximum hori-
zontal runup on the island is also predicted very well by Celeris
Base and is identical to results from Celeris Advent.

6. Conclusion

We introduce our open source software for coastal wave sim-
ulation, called Celeris Base. This software is a revamped version
the widely used Celeris Advent Boussinesq-type model. Celeris

S. Tavakkol and P. Lynett / Computer Physics Communications 248 (2020) 106966 13

Fig. 14. Experimental (– –) and numerical (–) time series for the interaction of
a solitary wave with H/d = 0.18 on a conical island, at gauges #6, #9, #16, and
#22 (a–d), simulated by Celeris Base.

Base is implemented in Unity3D using C# and HLSL. The scien-
tific equations are solved using compute shaders, unlike Celeris
Advent which uses regular pixel shaders. The discretization of
the extended Boussinesq equations is done using our hybrid
finite volume–finite difference scheme and implemented on GPU.
The structure of the software and source files are explained to
help researchers develop the software further. We introduced
several new features of Celeris Base such as its ability to overlay
geographic maps and its immersive virtual reality environment.
A compiled version of Celeris Base is distributed along with its
source codes under terms of the MIT License.

Acknowledgments

This research was partially funded by the Office of Naval
Research (ONR) award number N00014-17-1-2878. We acknowl-
edge the helpful comments and suggestions of an anonymous
reviewer.

Fig. 15. Numerical (solid line) and measured (•) maximum horizontal run-up
for H/d = 0.018 simulated by Celeris Base.

References

[1] C. Synolakis, U. Kanoğlu, Phil. Trans. R. Soc. A 373 (2015) 20140379.
[2] S. Tavakkol, Interactive and Immersive Coastal Hydrodynamics, University

of Southern California, 2019.
[3] S. Tavakkol, P. Lynett, Comput. Phys. Comm. 217 (2017) 117–127.
[4] M. Brocchini, Proc. R. Soc. A 469 (2013) 20130496.
[5] J.T. Kirby, J. Waterw. Port Coast. Ocean Eng. 142 (2016).
[6] D.H. Peregrine, J. Fluid Mech. 27 (1967) 815–827.
[7] P.A. Madsen, R. Murray, O.R. Sorensen, Coastal Eng. 15 (1991) 371–388.
[8] O. Nwogu, J. Waterw. Port Coast. Ocean Eng. 119 (1993) 618–638.
[9] Y. Chen, P.L.-F. Liu, J. Fluid Mech. 288 (1995) 351–381.

[10] P. Lynett, P.L.F. Liu, K.I. Sitanggang, D. Kim, Modeling Wave Generation,
Evolution, and Interaction with Depth-Integrated, Dispersive Wave Equa-
tions COULWAVE Code Manual Cornell University Long and Intermediate
Wave Modeling Package V. 2.0, Cornell University, Itacha, New York, 2008.

[11] Q. Chen, R.A. Dalrymple, J.T. Kirby, A.B. Kennedy, M.C. Haller, J. Geophys.
Res. Ocean 104 (1999) 20617–20637.

[12] P.J. Lynett, T.-R. Wu, P.L.-F. Liu, Coastal Eng. 46 (2002) 89–107.
[13] S. Ryu, M.H. Kim, P.J. Lynett, Comput. Mech. 32 (2003) 336–346.
[14] P. Lynett, P.L.-F. Liu, in: Proc. R. Soc. London A Math. Phys. Eng. Sci. 2002,

pp. 2885–2910.
[15] P.A. Madsen, O.R. Sørensen, Coastal Eng. 18 (1992) 183–204.
[16] P.J. Lynett, K. Gately, R. Wilson, L. Montoya, D. Arcas, B. Aytore, Y. Bai,

J.D. Bricker, M.J. Castro, K.F. Cheung, C.G. David, G.G. Dogan, C. Escalante,
J.M. González-Vida, S.T. Grilli, T.W. Heitmann, J. Horrillo, U. Kanoğlu, R.
Kian, J.T. Kirby, W. Li, J. Macías, D.J. Nicolsky, S. Ortega, A. Pampell-Manis,
Y.S. Park, V. Roeber, N. Sharghivand, M. Shelby, F. Shi, B. Tehranirad, E.
Tolkova, H.K. Thio, D. Velioğlu, A.C. Yalçıner, Y. Yamazaki, A. Zaytsev, Y.J.
Zhang, Ocean Model. 114 (2017) 14–32.

[17] G. Wei, J.T. Kirby, J. Waterw. Port Coast. Ocean Eng. 121 (1995) 251–261.
[18] K.S. Erduran, S. Ilic, V. Kutija, Internat. J. Numer. Methods Fluids 49 (2005)

1213–1232.
[19] M. Tonelli, M. Petti, Coastal Eng. 56 (2009) 609–620.
[20] A. Kurganov, G. Petrova, Commun. Math. Sci. 5 (2007) 133–160.
[21] F. Shi, J.T. Kirby, J.C. Harris, J.D. Geiman, S.T. Grilli, Ocean Model. 43–44

(2012) 36–51.
[22] V.V. Titov, C.E. Synolakis, J. Waterw. Port Coas. Ocean Eng. 121 (1995)

308–316.
[23] V. Titov, U. Kanoğlu, C. Synolakis, J. Waterw. Port Coast. Ocean Eng. 142

(2016).

http://refhub.elsevier.com/S0010-4655(19)30316-9/sb1
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb2
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb2
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb2
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb3
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb4
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb5
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb6
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb7
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb8
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb9
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb10
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb10
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb10
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb10
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb10
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb10
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb10
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb11
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb11
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb11
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb12
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb13
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb15
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb16
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb16
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb16
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb16
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb16
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb16
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb16
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb16
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb16
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb16
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb16
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb16
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb16
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb17
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb18
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb18
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb18
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb19
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb20
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb21
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb21
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb21
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb22
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb22
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb22
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb23
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb23
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb23

14 S. Tavakkol and P. Lynett / Computer Physics Communications 248 (2020) 106966

[24] S. Tavakkol, P. Lynett, in: Proc. Coast. Eng. Conf. 2016.
[25] M.A. Spicer, M.L.J. Apuzzo, Neurosurgery 52 (2003) 489–498.
[26] A. Sharma, A. Nakano, R.K. Kalia, P. Vashishta, S. Kodiyalam, P. Miller, W.

Zhao, X. Liu, T.J. Campbell, A. Haas, Presence Teleoper. Virtual Environ. 12
(2003) 85–95.

[27] P. Lynett, S. Tavakkol, in: 36th Int. Conf. Coast. Eng. 2018.
[28] P. Lynett, S. Tavakkol, in: AGU Fall Meet. Abstr. 2018.
[29] S. Tavakkol, S. Son, P. Lynett, ArXiv Prepr. ArXiv:1909.04153 (2019).
[30] M. Queijeiro Rilo, Estudio Del Clima Marítimo Y Diseño de Una Protección

Del Litoral de San Andrés, Tenerife, University of Cantabria, 2018.

[31] G. Pérez González, Predicción Del Remonte Del Oleaje (Ru2%) En Diques
En Talud Con Un Modelo de Boussinesq, University of Cantabria, 2018.

[32] V.A. Bheeroo, Long Wave Amplification in a Coral-Reef Lagoon, Oregon
State University, 2019.

[33] M.J. Briggs, C.E. Synolakis, G.S. Harkins, D.R. Green, Pure Appl. Geophys.
144 (1995) 569–593.

[34] V.V. Titov, C.E. Synolakis, ASCE J. Waterw. Port Coast. Ocean Eng. 124
(1998) 157–171.

[35] D.R. Fuhrman, P. a Madsen, Coast. Eng. – Amsterdam 55 (2008) 139–154.
[36] M. Tonelli, M. Petti, Ocean Eng. 37 (2010) 567–582.

http://refhub.elsevier.com/S0010-4655(19)30316-9/sb25
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb26
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb26
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb26
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb26
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb26
http://arxiv.org/abs/1909.04153
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb30
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb30
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb30
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb31
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb31
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb31
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb32
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb32
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb32
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb33
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb33
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb33
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb34
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb34
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb34
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb35
http://refhub.elsevier.com/S0010-4655(19)30316-9/sb36

	Celeris Base: An interactive and immersive Boussinesq-type nearshore wave simulation software
	Introduction
	Mathematical model
	Numerical model
	Boundary conditions
	Sponge layer

	Software documentation
	Source files
	Implementation
	Structure
	Solver
	Compute shaders
	Rendering mesh generation
	Shading and materials
	Map rendering
	Mouse pointer gauge
	Buoy

	Input and output files
	Compilation
	Running Celeris Base
	Immersive visualization
	 Implementation
	 Running Celeris VR

	Numerical validation
	Conclusion
	Acknowledgments
	References

