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A B S T R A C T

A multiple-scale perturbation approach is implemented to solve the Navier–Stokes equations while including
bottom boundary layer effects under a single wave and under two interacting waves. In this approach, fluid
velocities and the pressure field are decomposed into two components: a potential component and a rotational
component. In this study, the two components are exist throughout the entire water column and each is scaled
with appropriate length and time scales. A one-way coupling between the two components is implemented. The
potential component is assumed to be known analytically or numerically a prior, and the rotational component is
forced by the potential component. Through order of magnitude analysis, it is found that the leading-order
coupling between the two components occurs through the vertical convective acceleration. It is shown that this
coupling plays an important role in the bottom boundary layer behavior. Its effect on the results is discussed for
different wave-forcing conditions: purely harmonic forcing and impurely harmonic forcing. The approach is then
applied to derive the governing equations for the bottom boundary layer developed under two interacting wave
motions. Both motions—the shorter and the longer wave—are decomposed into two components, potential and
rotational, as it is done in the single wave. Test cases are presented wherein two different wave forcings are
simulated: (1) two periodic oscillatory motions and (2) short waves interacting with a solitary wave. The analysis
of the two periodic motions indicates that nonlinear effects in the rotational solution may be significant even
though nonlinear effects are negligible in the potential forcing. The local differences in the rotational velocity
due to the nonlinear vertical convection coupling term are found to be on the order of 30% of the maximum
boundary layer velocity for the cases simulated in this paper. This difference is expected to increase with the
increase in wave nonlinearity.

1. Introduction

Oscillatory bottom boundary layers have been extensively studied in
the literature through experiments and numerical models. Experiments
are often performed using an oscillating water tunnel for laminar and
turbulent boundary layers (Riedel et al., 1972; Kamphuis, 1975;
Jonsson and Carlsen, 1976; Sleath, 1987; Jensen et al., 1989). However,
the oscillating tunnel does not represent the flow under dispersive wave
conditions, where vertical velocity could play an important role in the
vicinity of the bed. Other experiments are performed in wave flumes
such as van Doorn (1981) and Mirfenderesk and Young (2003).

Numerical models have been developed to include the bottom
boundary layer effects under wave propagation using different ap-
proaches. One approach is through incorporating extra terms into the
governing equations. For example, Liu and Orfila (2004) and Liu (2006)
account for boundary layer effects by including a convolution integral
in the depth-integrated continuity equation and solving Boussinesq-

type wave equations for laminar and turbulent boundary layer flows.
Other approaches tend to solve two sets of models: one set for the flow
kinematics inside the boundary layer and another for the flow kine-
matics outside the boundary layer. This approach suffers from the need
to assume a boundary layer thickness before solving the problem. For
example, Lee and Cheung (1999) obtain flow kinematics by solving
Reynolds-averaged Navier–Stokes equations inside the viscous flow
region and the Laplace equation outside the viscous flow region, while
implementing fully nonlinear free surface boundary conditions.
Gilbert et al. (2007) couple a Numerical Wave Tank (NWT) potential
flow solver with a large eddy simulation solver and study the sediment
transport over partially buried obstacles. Harris and Grilli (2012) state
due to the limitation on the grid size used in the large-eddy simulation
model, this type of coupling is efficient when simulating simple cases.
Harris and Grilli (2012) couple an extended version of the
Zang et al. (1994) model of the large-eddy simulation solver with a
NWT and simulate velocity fields under any arbitrary finite-amplitude
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wave motion.
Other researchers have used direct numerical simulation (DNS) of

the three-dimensional Navier–Stokes equations. This approach provides
more accurate solutions but is numerically expensive. For instance,
Lin and Zhang (2008) simulate laminar bottom boundary layers gen-
erated under various wave motions; including sinusoidal, Stokes,
cnoidal, and solitary waves. Vittori and Blondeaux (2008) similarly use
direct numerical simulation to predict turbulent bottom boundary
layers generated under solitary waves.

Many of these solutions and models are either too sophisticated to
implement or numerically very demanding for large, complex pro-
blems. The shallow water wave models that have been used extensively
in the literature are considered to be good practical approximations to
nonlinear wave hydrodynamics and coastal processes in the near-shore
zone. However, these models lack an accurate way to include boundary
layer effects and thus bottom shear stresses. Kim et al. (2009) derive
depth-integrated Boussinesq-type wave equations from Navier–Stokes
(NS) equations and includes bottom-induced turbulence. They retain
integrated horizontal and vertical vorticity terms; however, the vertical
profile of the shear stress has to be assumed a priori.

We aim to develop a practical, yet accurate approach including
bottom boundary layer effects for complex near-shore environments
with multiple wave components. The approach followed here in this
study differs from the existing boundary layer theories in the order of
the decomposition of the flow and the scaling. In this study, the de-
composition of the flow is done before the scaling contrary to other
theories where decomposition of the flow is done after the scaling, i.e.
Liu and Orfila (2004) and Liu (2006). Also, there has been insufficient
research on bottom boundary layers generated under interacting os-
cillatory motions, although this interaction commonly exists in near-
shore zones. Therefore, a multiple-scale approach to include bottom
boundary layer effects under two wave motions is investigated in this
study. Each wave motion is decomposed into a potential component
and a rotational component, where each component is distinctly scaled.
The derived governing equations including bottom boundary layer ef-
fects under single wave motion are presented in Section 2, along with
the development of the one-dimensional numerical model with σ-co-
ordinate transformation. Section 3 covers the model validation and
comparison to available experimental and numerical data. Section 4
outlines the derivation of the governing equations for two wave mo-
tions and the corresponding model results. The main conclusions and
future recommendations are stated in Section 5.

2. Model derivation and governing equations for single oscillatory
motion

The first step in deriving our equation set is to decompose the wave
motion into two components: potential and rotational. The basis for this
decomposition and eventual scaling is that the potential, irrotational
component exists everywhere throughout the water column whereas
the rotational motion exists strongly near the bottom and decreases
with increasing distance from the bottom (in the absence of wind
stresses). This decomposition is used to scale the vertical coordinate for
each component. In addition, the time scale for each component could
be different depending on the characteristics of the problem.

Therefore, the multiple-scale perturbation approach is used to de-
rive the governing equations in this analysis. Two time scales are pre-
sented: a convective time scale that is used to scale the potential
component and viscous time scale that is used to scale the rotational
component. Consequently, the horizontal velocity, the vertical velocity,
and the pressure for the two components are scaled differently as will
be shown later in the paper.

One of the advantages of this decomposition is that it results in a
numerically simpler set of equations for the rotational component while
maintaining the interaction between the two components (rotational
and potential) of the wave motion. The allowance of the rotational
component to exist throughout the water column enables us to apply
boundary conditions only at the bottom and water surface. Thus, there
is no need to assume that the boundary layer thickness extends to in-
finity or diminishes at some ad-hoc depth. This approach overcomes the
need to use different models for the flow kinematics inside and for
outside of the boundary layer. Also, viscous effects are allowed to have
the same order of magnitude as the dispersion effects, contrary to some
previous models in which viscous effects are assumed to be weaker than
dispersion and nonlinear effects (Liu and Orfila, 2004; Liu, 2006; Orfila
et al., 2007).

2.1. Dimensionless governing equations

In this section, the propagation of an oscillatory wave train in a
constant water depth h′, surface elevation η′ (x′, y′, t′), frequency ω, and
wave amplitude a′ is considered. The wave motion is decomposed into
two components where the superscript p denotes the potential com-
ponent and r denotes the rotational component. This decomposition is
done before scaling the physical quantities, unlike other approaches,
where wave motion is decomposed after scaling. The decomposition are
given as
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where the prime denotes dimensional variables. Substituting the pre-
vious decomposition into the governing equations gives: the continuity
equation and the momentum equations in the x and z directions, re-
spectively, are
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The governing equations are non-dimensionalized by choosing the
appropriate length scale and time scale for each of the two components.
Shallow water wave scaling is presumed for the potential component.
The wavelength l′ is used for the horizontal length scale. The water
depth h′ is used for the vertical length scale, and ′ ′l gh/ is used for the
time scale.

For the rotational component, the wavelength l′ is used for the
horizontal length scale as with the potential component. The parameter
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δ* is defined as = ′ ′δ δ h* / , where δ′ is the dimensional boundary layer
thickness. The magnitude of δ* goes from near zero in the very smooth
bottom limit, to 1 in the limit when the boundary layer occupies the
whole water column, i.e., for long waves or currents over rough bot-
toms. Other researchers have incorporated this parameter, δ* , in their
scaling. For example, Vittori and Blondeaux (2008) and Blondeaux and
Vittori (2012) use the boundary layer thickness, defined as

′ ′ ′ν h gh2 / , as a viscous length scale to scale the horizontal and ver-
tical dimensions inside the bottom boundary layer. The horizontal ro-
tational velocity is scaled by the friction velocity, u*, as usually done in
boundary layer flows. In this study, the friction velocity is represented
by the bottom velocity Ub, multiplied by a parameter. The parameter is
β1 for the horizontal rotational velocity and β2 for the vertical rotational
velocity. The order of magnitude of these two parameters will be dis-
cussed. The rotational pressure is considered to be a dynamic pressure
and hence connected to the velocity scaling. It is scaled by the square of
the velocity and hence the parameter is β1

2.
The time scale for the rotational component is taken to be the vis-

cous time. This time scale is defined as length scale divided by viscosity,
(δ*h′)2/ν′. Where ν′ is the kinematic viscosity in the case of the laminar
boundary layer and the eddy viscosity in the case of turbulent boundary
layer. As it is mentioned before the flow is decomposed into potential
component and rotational component where the rotational component
is driven by the potential component. However, the potential forcing
has a convective time-scale that differs from the time-scale for rota-
tional component which is taken to be the viscous time-scale in this
study. The behavior of the rotational component is very much related to
the viscosity and thus the use of the viscosity in the time-scale meant to
represent the diffusion/viscous time-scale. Lastly, the pressure is scaled
by the density multiplied by the wave amplitude and gravity for both
the potential and the rotational components.

2.2. Derivation of the governing equations

The propagation of two-dimensional waves are considered, where
the x axis is taken to be in the direction of wave propagation and the
positive z axis points vertically upward with zero at the still water level.
The following dimensionless variables are introduced:
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where (x′, y′) are the horizontal axes, z′ is the vertical axis measured
from the still water level, t′ is time, (u′, v′) are the horizontal velocities,
w′ is the vertical velocity, p′ is the pressure, g is the gravitational ac-
celeration and ρ is the fluid density. Three small dimensionless para-
meters are introduced; the dispersion parameter μ ,the nonlinearity
parameter ϵ, and the viscous parameter = ′ ′δ δ l/ representing the ver-
tical-to-horizontal aspect ratio of the boundary layer length scales
(viscous equivalent to μ).

The dimensionless continuity equation and the dimensionless

momentum equations in the x and z directions, respectively, are then
become,
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The above dimensionless governing Eqs. (6)–(8) contain potential
terms, rotational terms, and interaction terms between the potential
and rotational components. A perturbation expansion of the following
form is assumed:
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where the dispersion parameter, μ2, is used as the small parameter of
perturbation for the potential component, and the viscous parameter
,δ2, is used as the small parameter of perturbation for the rotational
component. Substituting the above perturbation in the dimensionless
governing equations and retaining the leading order terms, μ2 and δ2,
for the potential and rotational components, the following dimension-
less equations are obtained:
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The potential solution is then factored out from the continuity and
the momentum equations. Hence, the following dimensionless gov-
erning equations contain the leading order terms of the rotational
component in addition to some interaction terms of the potential and
rotational components as follows
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2.3. The estimation of the order of magnitude for the small parameters β1
and β2

The leading order solution for the rotational component will depend
on the order of magnitude of parameters β1andβ2. The order of mag-
nitude for the parameter β2 can be estimated by looking at the con-
tinuity Eq. (13). For the two dimensional problem, the two gradient
terms must balance, such that =O β O δ μβ( ) ( * )2 1 . Hence the two para-
meters are related.

The order of magnitude for the parameter β1 can be estimated. The
velocity scale ′β ghɛ1 approximates the friction velocity, u* which it is
usually represented as a function of the maximum bottom shear stress
and/or the maximum bottom particle velocity. For example, friction
velocity can be given as =u τ ρ* /bmax

2 = f Uw b
1
2

2 where fw is the friction
factor, τbmax is the maximum bottom shear stress, and Ub is the max-
imum bottom particle velocity. In this paper, the friction velocity is
represented as a function of the maximum bottom particle velocity Ub

multiplied by the parameter β1 where =u β U* b1 . Applying the previous
relations and with simple manipulations, the order of magnitude of the
parameter, β1, is found to be proportional to the square root of the
friction factor fw. Therefore, the order of magnitude for β1 will depend
on the characteristics of the problem under investigation.

The friction factor is often assumed to be a function of the Reynolds
number and the bottom surface characteristics (smooth or rough) (e.g.
Cox et al., 1996). For laminar bottom boundary layers, there are various
methods to calculate the friction factor. For example, Nielsen (1992)
uses the maximum bottom shear stress defined as, =τ ρ νω U ,bmax b to
obtain friction factor defined as, =f ρω U2 /w b. Mirfenderesk and

Young (2003) represents the friction factor as a function of the Rey-
nolds number, =f R2/w e , where the Reynolds number is calculated
as, =R A U ν/ ,e b b with Ab is the maximum particle excursion at the
bottom. Here, the definition for the friction factor will be used
(Mirfenderesk and Young, 2003). Therefore, a typical value for the
parameter β1 in a laminar boundary layer would be in the range of O
(0.01–0.1). In turbulent boundary layer, the above analysis will need
further investigation.

3. Numerical model and results

A one-dimensional numerical model is developed to solve the gov-
erning equations for the rotational component. This numerical model
will be called the viscous-sigma-model in this paper. The σ-coordinate
transformation is applied in the vertical direction to ensure fine re-
solution near the bottom to properly resolve the boundary layer. The
following transformation is implemented:

⎜ ⎟= ⎛
⎝

+
+

⎞
⎠

σ z h
h η

,
n1/

(16)

where n is a free power used to adjust the resolution of the numerical
grid. We used a value of =n 2 as this provided acceptable resolution
near the bottom yielding numerical convergent results. Before applying
the viscous-sigma-model the leading order solution for the rotational
component is found. This step requires an estimate of the relative order
of magnitude of the parameter, β1, and the other small parameters, μ,
δ*, and ϵ. From the x-momentum Eq. (14), the local acceleration term
and the diffusion term are of the same order of magnitude. It is also
noticed that the coupling term w u( ) ,o

p
o
r

z with the coefficient
δ
ɛ
*
, could

have a comparable order of magnitude to both the local acceleration
and the diffusion terms when O(δ*) has the same order of magnitude as
ϵ. The other terms in the x-momentum Eq. (14) have a higher order of
magnitude and thus will be neglected in this study.

In this study, the coupling term, w u( ) ,o
p

o
r

z is examined to quantify its
effect on the bottom boundary layer behavior under various wave
forcing types, including purely harmonic forcing, (i.e., oscillatory
waves), and transient forcing, (i.e., solitary waves). Numerical calcu-
lations of the boundary layer are performed by specifying the potential
component as an input to the viscous-sigma-model. The numerical si-
mulation is run twice for each forcing type. In the first simulation, the
horizontal momentum equation is solved without the coupling term,
w u( )o

p
o
r

z. The horizontal rotational velocity is obtained via solving the x-
momentum Eq. (18), and it will be called the linear model solution. In
the second simulation, the coupling term is retained. The horizontal
rotational velocity is obtained via solving the x-momentum Eq. (19),
and it will be called the nonlinear model solution. The two solutions
will be plotted against experimental data to investigate the effect of this
coupling term

The dimensional continuity, the x-momentum governing equations,
and the boundary conditions for the rotational motion are,
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The no-slip boundary condition at the bottom and zero shear stress is
assumed at the water surface:

= − = −u u z hat ,r p (20)

∂
∂

= =u
z

z0 at 0.
r

r (21)
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It is clear that the developed scaling in this study produces a simple
solution for obtaining the rotational velocity component where only the
vertical and time dimensions are required to solve the equations. The
needed quantities to solve the above equations are the horizontal po-
tential velocity at the bottom along with the vertical profile of the
vertical potential velocity.

3.1. Oscillatory wave

The first set of simulations examines the boundary layer generated
under oscillatory wave motion. Linear wave theory is used to provide
the potential component in this case. The model results are compared to
the experimental data of Mirfenderesk and Young (2003) for case S1,
and the linear analytical solution by Lamb (1932). The Lamb (1932)
solution for the total horizontal velocity is given as

= − − − − +u u kx ωt βz kx ωt βz(cos( ) exp( )cos( )),m (22)

where um is the maximum horizontal velocity near the bottom, k is the

wave number, = ( )β ω
ν2 is the boundary layer parameter, and z is the

distance from the bottom.
The single harmonic wave characteristics used in the experiment

are: wave height of 0.12 m, wave period of 2 s, wavelength of 4.21 m,
and a constant water depth of 0.55 m. The values of μ and ϵ are 0.13
and 0.11, respectively. The mesh in the viscous-sigma-model compu-
tational domain is composed of 201 grid points in the vertical direction
with minimum = −z eΔ 1.5 005 m near the bottom. A constant time step
of =tΔ 0.0001 s is used. The simulation is run for 30 wave periods to
ensure a fully developed boundary layer. The comparison of the model

result with the experimental data and the analytical solution of
Lamb (1932) are shown in Fig. (1). Only the accelerating phase is
shown here. As is shown in the figure, the linear model results agree
very well with the analytical solution of Lamb (1932). However, the
nonlinear model results provide a better match to the experimental
data. An explanation for this remark could be due to the weakly non-
linear nature of this configuration. The ratio

δ
ɛ
*
is of order O(1) in this

case further indicating that the coupling term is important, and likely
influences the solution.

The second oscillatory data set used for comparison is the numerical
solution of the three-dimensional Navier–Stokes equations by Lin and
Zhang (2008). In this case, the wave height is 0.01 m, the wave period
of 3 s, and the wave propagates in a constant water depth of 1.0 m,
( =ɛ 0.005 and =μ 0.1). 201 grid points are used in the vertical direc-
tion with minimum = −z eΔ 2.5 005 m near the bottom. The model is
run for 30 wave periods with a constant time step of =tΔ 0.0001 s. In
this case, both the linear and nonlinear model results agree very well
with the numerical results of Lin and Zhang (2008) as shown in Fig. (2).
In this case,

δ
ɛ
*
is less than O(1). Thus, the effect of the coupling term in

this test case is small compared to the previous data set. It is worth
noting that the computational cost for running our model is much less
than the full three dimensional model of Lin and Zhang (2008) while
obtaining the same accuracy.

3.2. Solitary wave

The next set of simulations examines the boundary layer generated
under solitary waves. In these simulations, the potential component is

Fig. 1. Vertical profiles of the horizontal velocity in the laminar boundary layer under a linear wave at = ∘ωt 0 , 36 °, 72 °, 108 °, 144 °, and 180 ° (top) and at = ∘ωt 18 , 54 °, 90 °, 126 °, and
162 ° (bottom) from right to left, respectively. Solid line: linear numerical model; dashed line: nonlinear numerical model; Δ: analytical solution; ○: experimental data of
Mirfenderesk and Young (2003).
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numerically obtained by solving the one-dimensional Boussinesq-type
wave model of Lynett and Liu (2002). The dimensional continuity
equation and the horizontal momentum equation are,

⎜ ⎟

∂
∂

+ ∂
∂

+ − ∂
∂

⎧
⎨⎩

+ ⎡
⎣⎢

⎛
⎝

− ⎞
⎠

∂
∂

+ ⎛
⎝

− − ⎞
⎠

∂ ∂
∂

⎤
⎦⎥

⎫
⎬⎭

=

η
t x

h η u
x

h η h z u
x

η h z hu x
x

( ) ( )
6

1
2

1
2

( ) ( )/ 0

α α
α

α
α

2
2

(23)

∂
∂

+
∂
∂

+
∂
∂

+ ∂
∂

⎧
⎨⎩

∂
∂

+ ∂ ∂
∂

⎫
⎬⎭

=u
t

u
x

g
η
x t

z u
x

z hu x
x

1
2

1
2

( )/ 0,α α
α

α
α

α
2

2

(24)

where uα is the velocity at the reference level, zα, and is taken as
− 0.531h, Nwogu (1993). The vertical profiles for the horizontal and
vertical velocities are obtained via the equations

= − − − −u u z z u z z hu1
2

( ) ( )( ) ,α α αxx α α xx
2 2

(25)

= − −w z u hu( ) .α αx α x (26)

An Adams–Bashforth–Moulton predictor–corrector scheme is used
to integrate the continuity Eq. (23) and the x-momentum Eq. (24). The
potential horizontal and vertical velocities are obtained along with the
surface elevation and both are passed to the viscous-sigma-model. Fi-
nally, the potential component is added to the rotational component to
obtain the total velocity field.

Two data sets of the experiment done by Liu et al. (2007) are used
for comparison. The first set uses a water depth of 0.1 m, and a solitary
wave height of 0.02 m. The dispersion and the nonlinearity parameters,
ϵ and μ, are 0.2 and 0.0658, respectively. The computational domain of
the one-dimensional Boussinesq model consists of 7000 grid points in
the x direction with =xΔ 0.001 m. The viscous-sigma-model has 201
grid points in the vertical direction with minimum = −z eΔ 2.5 006 m
near the bottom. A constant time step of = −t eΔ 3 005 s is used.

First, the numerical solution is compared with the experimental

data. Both linear and nonlinear solutions of the viscous-sigma-model
are obtained. In general, both solutions agree well with the experi-
mental data in the accelerating phase. However, a remarkable differ-
ence between the linear solution and the nonlinear solution in the de-
celerating phase is noticed, as shown in Fig. (3). The results of the
nonlinear model show better agreement with the experimental data in
the decelerating phase. The coupling term in the x-momentum equation
is presumed to have an effect in the decelerating phase. It is also noticed
that the computational time for the linear model and the nonlinear
model are very close as the vertical potential velocity is known.

Bottom shear stresses are calculated using the rotational velocity
gradient at the bottom and are shown in Fig. (4). The calculated bottom
shear stresses agree with both the experimental results and the analy-
tical solution of Liu et al. (2007). The change in sign in the bottom shear
stress is captured by the model results, even though the velocity outside
the boundary layer is always in the direction of the wave propagation.
There are very small differences between the bottom shear stress
computed from the linear and the nonlinear model and the comparison
has been separated in two plots for clearness. This result suggests our
approach is an accurate and practical way for calculating bottom shear
stress compared to, for example, the quadratic drag law driven by the
bottom potential velocity.

The characteristics of the second data set of Liu et al. (2007) are:
water depth of 0.1 m, and wave height of 0.03 with ϵ and μ equal 0.3
and 0.0813, respectively. The viscous-sigma-model has 201 grid points
in the vertical direction with minimum = −z eΔ 2.5 006 m near the
bottom and a constant time step of = −t eΔ 3.4 005 s. The comparison
with the experimental data is shown in Fig. (5). Both the linear and
nonlinear model solutions are able to predict the velocity profile in the
accelerating phase with the tendency of the nonlinear solution to better
match the experimental data in the decelerating phase.

Bottom shear stress is calculated and compared with the experi-
mental solitary wave data set =ɛ 0.2 to investigate the effect of wave
nonlinearity. Decreasing shear stress with increasing wave nonlinearity,
ϵ, is clear in Fig. (6), this is shown Liu et al. (2007) as well. The top

Fig. 2. Vertical profiles of the horizontal velocity in the laminar boundary layer under a linear wave at =ωt nπ/8 ( = ⋯n 0, 1, 2, , 16). Solid line: linear numerical model; dashed line:
nonlinear numerical model (overlays solid line closely); ○: numerical solution from Lin and Zhang (2008).
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Fig. 3. Vertical profiles of the dimensionless horizontal velocity for ϵ =0.2. Solid line: linear model solution; − −Δ : nonlinear model; dashed line: numerical solution of the nonlinear
boundary layer equation of Park (2009). Experimental data are denoted as follows: top accelerating phases, (a)- = −ξ 0.2 ○; (b)- = −ξ 0.01 ⋄; and bottom decelerating phases, (c)-

=ξ 0.37 □; (d)-* =ξ 0.70 from Park (2009).

Fig. 4. Time history of the dimensionless bottom bed shear stress for =ɛ 0.2. Top figure solid line: linear model solution; dashed line: linear solution of Liu et al. (2007); ○: Experimental
data of Liu et al. (2007); and bottom figure solid line: the nonlinear model; dashed line: nonlinear solution of Liu et al. (2007);○: Experimental data of Liu et al. (2007).

H. Elsafty, P. Lynett Ocean Modelling 124 (2018) 48–60

54



Fig. 5. Vertical profiles of the dimensionless horizontal velocity for =ɛ 0.3. Solid line: linear model solution; − −Δ : nonlinear model; dashed line: numerical solution of the nonlinear
boundary layer equation of Park (2009). Experimental data are denoted as follows: top accelerating phases, (a)- = −ξ 0.22 ○; (b)- = −ξ 0.03 ⋄; and bottom decelerating phases, (c)-

=ξ 0.39 □; (d)- =ξ 0.70 * from Park (2009).

Fig. 6. Dimensionless bed shear stress for different values of nonlinearity: linear model in top figure and nonlinear model in bottom figure. Top figure: solid line for =ɛ 0.2 and dashed-
line-circle for =ɛ 0.3. Bottom figure: solid line for =ɛ 0.2 and dashed-line-circle for =ɛ 0.3.
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panel in Fig. 6 shows the comparison of bottom shear stress calculated
using the linear model for ϵ=0.2 and ϵ=0.3. The bottom panel in the
figure shows the comparison of bottom shear stress calculated using the
nonlinear model for ϵ=0.2 and ϵ=0.3. Vittori and Blondeaux (2008)
mention that for small amplitude waves, the boundary layer tends to
remain laminar and the negative velocities during the flow reversal in
the decelerating phase persist. They show that the flow reversal in-
tensity and time duration decreases with increase in ϵ. The same
properties are evident here while comparing the experiment data sets
with the numerical solutions.

4. Model derivation and governing equations for two wave
motions

In this section, the propagation of a wave train in a constant water
depth is considered. The shorter wave motion has a surface elevation of

′ηs (x′, y′, t′), a frequency ωs, and a wave amplitude ′as interacting with a
longer wave motion that has a surface elevation of ′ηl (x′, y′, t′), a fre-
quency ωl, and a wave amplitude ′al . The decomposition of each wave
motion of the two interacting waves into potential and rotational
components is done here. The governing equations are non-dimensio-
nalized by the appropriate length and time scales for each component of
each wave. The following decomposition is used:

′ = ′ + ′ ′ = ′ + ′
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where the prime denotes dimensional variables. The superscript p de-
notes the potential component and r denotes the rotational component.
The superscript s denotes the shorter wave and l denotes the longer
wave. The following normalizations are used,
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where ′ ′x y( , )s l s l, , are the horizontal axes, z′ is the vertical axis measured
from the still water level, ′ts l, is time, ′ ′u v( , )s l s l, , are the horizontal velo-
cities, ′ws l, is the vertical velocity, is the pressure, g is the gravitational
acceleration, and ρ is density. Six dimensionless small parameters are
introduced: the dispersion parameters μs, l, the viscous parameters δs, l,
and the nonlinearity parameters ϵs, l. By substituting the previous de-
composition relations and scaling into the governing equations, the
dimensionless continuity equation and the dimensionless momentum
equations in the x and z directions are, respectively,
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4.1. The estimation of the order of magnitude for the small parameters

The governing equations have ten small parameters which are :μs, μl,
β1s, β1l, β2s, β2l, ϵs, ϵl, δs, and δl. We attempt to find approximate rela-
tions to group these parameters together and thus decreasing their
number. First, we note that the parameters β1s and β1l are multiplied by
the bottom velocity to represent the friction velocities as in single wave
motion. Therefore, by comparing the friction factors of these two mo-
tions, the relative order of magnitude of the parameters, β1s and β1l, can
be estimated as O(β1l/β1s)≈O(Res/Rel).

Here, the Reynolds number is given as =R u ων/ ,e b
2 where the ex-

pression for the maximum particle excursion is used. After using the
maximum bottom velocity expressions for the two motions and per-
forming simple manipulations, the following relations are obtained:

⎜ ⎟

=

≈ ⎛
⎝

⎞
⎠

−

O R R O μ μ

O β O β μ

( / ) (ɛ /ɛ ).

( ) / ɛ
ɛ

.

es el s l l s

l s s
m s

l

2 2

1 1
( 1)/4

(32)

Second, it is presumed that the dispersion parameter of the shorter
wave and the longer wave can be related as =O μ O μ( ) ( ),l s

m where m is
a free power that depends on the characteristics of the problem. Third,
it is assumed that the two waves have comparable amplitude, O(ϵs)≈O
(ϵl). Therefore, the Reynolds number of the shorter wave is smaller than
the Reynolds number of the longer wave, O(Res)≤O(Rel). Thus, the
friction factor of the longer wave is smaller than the friction factor of
the shorter wave (fwl≤ fws), and the parameter β1 of the longer wave is
smaller than β1 of the shorter wave. This leads to (β1l≤ β1s). By sub-
stituting the previous relations into the governing equations, the
number of small parameters are reduced to eight: β1s, β2s, β2l, μs, ϵs, ϵl,
δs, and δl.

Finally, it is assumed that, =O β O β δ μ( ) ( * )s s s s2 1 and,
=O β O β δ μ( ) ( * )l l l l2 1 , as it is done in the single motion. Therefore, it is

possible to reduce the number of small parameters to six. Finally, each
wave motion is assumed to follow the Boussinesq assumption. Thus,

≈ ≪O O μ(ɛ ) ( ) 1,s s
2 and the same for the longer motion,

≈ ≪O O μ(ɛ ) ( ) 1l l
2 . By applying this final assumption, the number of

the free parameters is decreased to four.

4.2. Model results

The bottom boundary layers generated under the interaction of
short and long waves with different long wave forcings are investigated
in this section. The first interaction type consists of two periodic short
and long waves. The second interaction type consists of short waves
interacting with a solitary wave. The first case represents periodic
forcing whereas the second case represents transient forcing. The
boundary layer response under these two different forcings is discussed.

4.3. Two oscillatory motions

In this section, the bottom boundary layer generated under two
interacting oscillatory wave motions is presented. The parameters of
the problem are: =ɛ 0.05,s =ɛ 0.005,l =μ 0.12,s =μ 0.04,l and thus
m≈ 1.5. The Reynolds number and the friction factor are calculated
and O(β1s)≈O(0.01). It is assumed that ≈O δ O( *) (ɛ )s s and

≈O δ O β( *) ( )l s1 . After applying these relations and keeping only the
leading order terms, the dimensional governing equations are,
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The equations contain the potential component terms of both the
short and the long waves. The remaining terms are for the rotational
component along with some interaction terms of the potential and ro-
tational components. After factoring out the potential solution, the di-
mensional governing equations for the rotational component are,
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Two boundary conditions are required in order to solve the equa-
tions: the velocity gradient at the top boundary and the bottom velo-
city. The shorter wave motion is superimposed on an existing longer
wave in this study. Therefore, the combined potential of the short and
the long wave is the forcing mechanism. The bottom boundary condi-
tion is taken to satisfy the no-slip boundary condition, and zero shear
stress is assumed at the water surface,

= − = −u u z hat ,t
r

t
p (38)

∂
∂

= =
u
z

z η0 at ,t
r

r (39)

where ut
r is the total rotational horizontal velocity and ut

p is the total
potential horizontal velocity.

The computational domain length is chosen to be 50 wavelengths of
the longer wave. The simulation is run for 80 wave periods of the longer
wave to ensure a fully developed boundary layer. The computational
domain has =xΔ 0.03 m, =zΔ 0.00001 m, and =tΔ 0.0005 s with 0.5 m
water depth. Sponge layers are used on the left and right boundaries to
absorb the wave energy. The two oscillatory waves are generated using
the source function as described in Wei and Kirby (1995) inside the one-
dimensional Boussinesq-type wave model. The potential velocities of
the short wave and the long wave are passed to the viscous-sigma-
model. The viscous-sigma-model solves the Eqs. (36) and (37) with the
two boundary conditions (38) and (39), to obtain the vertical profile of
the combined rotational velocity.

Two different simulations are presented in this section. In the first
simulation, the effect of the coupling term under the interaction of two
waves is quantified. The potential forcing is fixed and the horizontal
momentum equation is solved twice: one time with the coupling terms,
(the third and fourth terms in the Eq. (37, nonlinear model solution) ,
and a second time without the coupling terms (linear model solution).
The combined velocity profile at different locations are shown in Fig.
(7), where =u u gh/ ,α =η η h* / , and =z z h* / . It is noticed that the
boundary layer response is different in these two cases despite the same
potential forcing. The nonlinear model solution is larger in the accel-
erating phase while the linear model solution is larger in the deceler-
ating phase. Thus, the superposition principle should be used carefully
while studying bottom boundary layer and sediment transports under
wave interacting. Also, we expect the flow outside the boundary layer
to be reasonably well captured using the Boussinesq model and under
the linear forcing in this case and hence the comparison for the flow
outside the boundary won’t be presented here.
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Fig. 7. Surface elevations and vertical profiles of the horizontal velocity in the laminar boundary layer under the interaction of two oscillatory motions at different times of the same
potential forcing. Solid line: nonlinear solution; dashed line: linear solution.
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4.4. Periodic waves over solitary wave

In this simulation, the bottom boundary layer is forced by the in-
teraction of a solitary wave and short periodic waves. The short waves
are generated in the Boussinesq numerical wave model using the source
function. The initial location of the solitary wave is set behind the

source location. The characteristics of the short wave are as before
( =ɛ 0.05s and =μ 0.12)s and the solitary wave has =ɛ 0.005l . The dif-
ferences in the velocity profile in this test case are more pronounced as
compared to the difference seen in the two oscillatory motions, as
shown in Fig. (8). Moreover, the combined velocity profiles show in-
flection points in the accelerating phase. This remark does not exist in

Fig. 8. Surface elevations and vertical profile of the horizontal velocity in the laminar boundary layer under the interaction of a solitary wave and swell waves at different times of the
same potential forcing. Solid line: nonlinear solution; dashed line: linear solution.
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the velocity profile under a single solitary wave. An explanation for this
remark could be to the rapid acceleration and deceleration phases of the
solitary wave compared to those of the oscillatory long wave. Also, the
effect of the solitary wave is found in the boundary layer even after it
passes, see Fig. (8)f.

5. Conclusions

This work aims to incorporate bottom boundary layer effects forced
by a single wave and under two interacting waves. The multiple-scale
approach is applied to the Navier–Stokes equations where the fluid
velocities and pressure are decomposed into two components: potential
and rotational. Both components are allowed to coexist in the entire
water column. Different time scales are employed for the two compo-
nents: a convective time scale is used for the potential component and a
viscous time scale for the rotational component. The friction velocity is
used to scale the rotational velocity component; it is represented here as
a small parameter β1 multiplied by the bottom velocity ub , i.e.,

=u β u* b1 . The order of magnitude of the coefficient, β1, is found from
the analysis and is related to the friction factor, which depends on the
characteristics of the problem under consideration.

By applying this approach, a set of equations for the rotational ve-
locity component are derived. The boundary layer thickness is not as-
sumed to be finite, and therefore it is not necessary to use different
models to solve for the flow kinematics inside and outside the boundary
layer. A one-dimensional numerical model with σ-coordinate transfor-
mation in the vertical direction is used. The single wave forcing consists
of harmonic forcing (e.g. oscillatory wave) and transient forcing (e.g.
solitary wave). Linear wave theory is used to obtain the potential ve-
locity component for the oscillatory wave motion case, while a one-
dimensional Boussinesq-type equation is solved numerically to obtain
the potential velocity component in the solitary wave motion case.

A one way-coupling is used where the potential horizontal bottom
velocity and the vertical component of the potential velocity are passed
to the viscous-sigma-model to solve for the rotational velocity compo-
nent. Finally, the two components (potential and rotational) are
summed to obtain the total velocity field. The order of magnitude
analysis shows that the leading-order coupling between the potential
and rotational components occurs through the vertical convective ac-
celeration term, wp(∂ur/∂z). The model results agree well with the
available experimental data and the numerical solutions for different
forcing conditions, with better matching when including the coupling
term under the various wave forcings.

Under solitary waves, the bottom shear stress undergoes a change in
sign during the wave cycle, although the velocity outside the boundary
layer is always positive in the direction of wave propagation. The
conventional way of calculating bottom shear stresses (i.e. the quad-
ratic law using the bottom velocity), will not be able to predict this
change in sign. In the approach outlined in this paper, the bottom shear
stress is calculated using the rotational velocity gradient at the bottom,
and the sign change is captured.

For the two wave motion cases, the governing equations for the
bottom boundary layer forced by the interaction of two distinct wave
motions are derived. Both motions (the shorter and the longer waves)

are decomposed into two components (potential and rotational).
Laminar boundary layer approximations are used to reduce the number
of small parameters that appear in the governing equations. Different
examples of the boundary layer under two wave motions are presented
here: 1) the interaction of long and short oscillatory wave motions and
2) the interaction of a solitary wave with periodic waves. The analysis
of the two wave motions indicates that nonlinear effects in the rota-
tional solution may be significant even when nonlinear effects in the
potential forcing are negligible. These results suggest the careful use of
the superposition principle in case of interacting two wave motions.
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