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SUMMARY

A hybrid wave model is developed for simulation of water wave propagation from deep water to shoreline.
The constituent wave models are the irrotational, 1-D horizontal Boussinesq and 2-D vertical Reynolds-
averaged Navier–Stokes (RANS). The models are two-way coupled, and the interface is placed at a
location where turbulence is relatively small. Boundary conditions on the interfacing side of each model
are provided by its counterpart model through data exchange. Prior to the exchange, a data transformation
step is carried out due to the differences in physical variables and approximations employed in both
models. The hybrid model is tested for both accuracy and speedup performance. Tests consisting of
idealized solitary and standing wave motions and wave overtopping of nearshore structures show that:
(1) the simulation results of the current hybrid model compare well with the idealized data, experimental
data, and pure RANS model results and (2) the hybrid model saves computational time by a factor
proportional to the reduction in the size of the RANS model domain. Finally, a large-scale tsunami
simulation is provided for a numerical setup that is practically unapproachable using RANS model alone;
not only does the hybrid model offer more rapid simulation of relatively small-scale problems, it provides
an opportunity to examine very large total domains with the fine resolution typical of RANS simulations.
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1. INTRODUCTION

Most of the currently available ocean wave models are developed based on a single set of governing
equations applied on the entire computational domain. While model tests have shown agreement
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with various target scenarios, the applicability of such models for more general purpose appli-
cations such as the simulation of offshore-to-shoreline wave propagation, which includes both
the nonbreaking and breaking wave processes, is still limited due to the physical assumptions
in the models. For instance, depth-integrated equations using potential flow assumptions are one
of the more commonly employed equations/assumptions in existing wave models. The imple-
mentation of such models on a certain domain is valid only if the flow regime is far from the
high-intensity turbulence area such as the nearshore breaking zone. Although the application of
such models with the help of the ad hoc turbulence [1, 2]may be pushed further nearshore to include
the wave-breaking processes, caution should be taken for the implementation of a more general
and complex 3-D nearshore bathymetry. Another set of equations that are currently widely used
for wave modeling is the turbulence-closed Reynolds-averaged Navier–Stokes (RANS) equations.
The models developed based on these equations are well suited for breaking wave and wave–
structure simulations [3, 4]. The implementation of this model, however, is usually confined to
the nearshore zone where a relatively large number of grid points and fine mesh are needed to
accurately capture the turbulence. This incurs expensive computational effort. Hence, extending
the implementation of the model to a larger domain is often not practically feasible.

This paper describes the simultaneous use of two wave models that belong to the first and
second aforementioned wave models for wave simulation in the ocean. The two models are the
Boussinesq-equation type and the RANS-equation-based wave models. In this study, the scope is
limited to coupling the 1-D Boussinesq and 2-D RANS wave models. To allow for application
on a wider range of wave nonlinearity, the fully nonlinear Boussinesq-equation model [5, 6] is
employed. For the second model, we use a RANS-based model with a two-equation turbulence
closure scheme [3]. The two models are two-way coupled, and so act as if they are a single model
working on a continuous domain. In the coupling implementation, the Boussinesq model is applied
in the non-breaking zone and the RANS model in the breaking/high-turbulence zone. The two
models share a common domain interface for exchanging data, used as boundary conditions in
the models. By coupling the two models, accurate large-scale wave simulation using a coarse grid
and ‘simple’ physics in the deep-to-intermediate water and fine grid and detailed physics in the
nearshore area is computationally feasible. In summary, the coupled hybrid model bridges the two
widely used wave models.

The rest of the paper is organized as follows. First, we briefly explain the two constituent wave
models along with their numerical solution procedures. Second, the coupling method and the data
exchange for boundary conditions are explained in detail. Third, we test the hybrid model against
several scenarios for validation and relative speedup. Finally, a large-scale tsunami simulation
is provided for a numerical setup that is practically unapproachable using RANS model alone;
demonstrating the potential of the hybrid model to efficiently tackle multi-scale problems.

2. BOUSSINESQ-EQUATION WAVE MODEL

2.1. Governing equation

Consider wave propagation from offshore to the shoreline as depicted in Figure 1. Depending on
the wave condition, this sea area is unequally divided into nonbreaking (offshore) and breaking
(nearshore) zones. Turbulence is assumed to be small inside the nonbreaking zone and is therefore
neglected. Using this assumption along with the incompressibility of water, the flow inside the
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Figure 1. Wave propagation from offshore to shoreline (adapted from [7]). In the hybrid model, the 1-D
Boussinesq equation is employed to model the 2-D nonbreaking wave motion and the 2-D RANS equation
to model the 2-D wave-breaking motion. The boundary condition in each model is provided through data

exchange on the interface area.

nonbreaking zone can be modeled using the continuity and Euler equations:

�2ux +wz =0 (1)

�2ut +��2uux +�wuz+�2 px =0 (2)

�wt +�2uwx + �2

�2
wwz+�pz+1=0 (3)

The above equations are dimensionless where the coordinate system, time, velocity, and pressure
are nondimensionalized as

x= x ′

l
, z= z′

h0
, t=

√
gh0
l

t ′, u= h0
a0

√
gh0

u′, w= h20
a0l

√
gh0

w′, p= p′

�ga0

All variables with subscript are the dimensional forms. The variable g is gravity, h0 is the char-
acteristic depth, l and a0 are wave length and typical wave amplitude. Related with the last
three variables are the nonlinearity and frequency dispersion parameters, defined as �=a0/h0 and
�=h0/l, respectively.

For a single-valued free surface problem, (1)–(3) can be vertically integrated with respect to z
over the entire depth,

∫ �(x,t)
−h(x) (. . .)dz, to reduce the model from 2-D to a one horizontal dimension
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(1HD) problem. This requires the imposition of the dynamic, p=0, and kinematic, w=�t +u�x ,
free surface boundary conditions at z=�, and zero normal velocity, w=−uhx , at the bottom,
z=−h. From here, certain assumptions are made to derive the Boussinesq equations. First, it is
assumed that the frequency dispersion is small, O(�2)�1. The wave nonlinearity, however, is not
assumed to be small. Second, to perform the integration the horizontal velocity is expressed in
terms of the velocity at some reference level, z�, as used in [8], via a Taylor series expansion

u(x, z, t)=u(x, z�, t)+(z−z�)uz(x, z�, t)+ (z−z�)2

2
uzz(x, z�, t)+·· · (4)

Note that while the assumptions made here permit the creation of an extremely efficient wave
model, they govern the limits of application of the model, and thus play an important role in the
development of the coupled system.

Retaining higher-order terms in (4), as done in [6], and performing the integration (with some
algebraic manipulations) gives, in dimensional form, the 1HD continuity

�H
�t

+ �(Hu�)

�x
− �

�x

{
H

[(
1

6
(�2−�h+h2)− 1

2
z2�

)
�S
�x

+
(
1

2
(�−h)−z�

)
�T
�x

]}
=0 (5)

and momentum equation

�u�

�t
+ 1

2

�u2�
�x

+g
��

�x
+ �

�t

{
1

2
z2�

�S
�x

+z�
�T
�x

− �
�x

(
1

2
�2S+�T

)}

+ �
�x

{
��
�t

(T +�S)+(z�−�)

(
u�

�T
�x

)
+ 1

2
(z2�−�2)

(
u�

�S
�x

)

+1

2
(T +�S)2

}
=0 (6)

where u� is the velocity at the reference level, H =h+�, S=�u�/�x , and T =�(hu�)/�x+�h/�t .
The use of z� in the integration has resulted in a frequency dispersion term, the third term in (5),

which would not be produced if we had to use the depth-averaged velocity as the velocity vari-
able [9]. This variable is set to z� =−0.531h, where h is the depth, to obtain the best fit between
the linear dispersion of the model and the exact dispersion for a wide range of water depths [8].

The linear-dispersion accuracy limit of the above equation is near kh=3.0, where k is the wave
number and the nonlinearity is accurate up to kh=1.0 [5].

As will be explained later, the Boussinesq model passes the vertical profiles of the velocities,
u(z) and w(z), to the RANS model in the data exchange between the two models. Although
the 2-D problem has been converted to the 1HD, this profiles are obtainable from the original
2-D equations. The former can be obtained from the z-integration of the irrotationality condition,
wx −uz =0:

u=u�− 1
2(z

2−z2�)u�xx −(z−z�)(hu�)xx (7)
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while the latter is found from (1):

w=−zu�x −(hu�)x (8)

In both derivations, higher-order term, O(�4), is truncated.

2.2. Numerical solution

Equations (5) and (6) are coupled, first order in time differential equations for the free surface
elevation, �, and reference velocity, u�. A few methods are available to integrate the equations in
time, such as the Runge–Kutta, the Richardson extrapolation, and the predictor–corrector methods.
Owing to the complexity of the equations, we choose the last method for solving the equations.
One variant of this method is the higher-order Adams–Bashforth–Moulton predictor–corrector [10],
which has good stability properties. For comparison, we also have implemented a Runge–Kutta
method, which demonstrates instability for most of the cases tested. We conjecture that the Adams–
Bashforth–Moulton predictor–corrector is the better choice for solving (5) and (6), and is also the
approach most commonly found in the literature for solving these equations (e.g. [6]).

Following terms arrangement used in [5] for better numerical stability recasts (5) and (6) as

�t = E(u�,�,h) (9)

Ut = F(u�,�,h) (10)

where

E = −ht −[(�+h)u�]x
+{(�+h)[( 16 (�2−�h+h2)− 1

2 z
2
�)Sx +( 12(�−h)−z�)Tx ]}x (11)

F = − 1
2(u

2
�)x −g�x −z�hxtt −z�t hxt +(�htt )x −[E(�S+T )]x

−[12 (z2�−�2)u�Sx]x −[(z�−�)u�Tx ]x − 1
2 [(T +�S)2]x (12)

U =u�+ 1
2 (z

2
�−�2)u�xx +(z�−�)(hu�)xx −�x [�u�x +(hu�)x ] (13)

In the predictor step, the explicit third-order Adams–Bashforth method is used to solve (5) and (6):

�n+1
i =�ni + 1

12�t (23E
n
i −16En−1

i +5En−2
i ) (14)

Un+1
i =Un

i + 1
12�t (23F

n
i −16Fn−1

i +5Fn−2
i ) (15)

where superscripts indicate the time level and subscripts represent the grid or spatial location. The
implicit fourth-order Adams–Moulton method is used in the corrector step:

�n+1
i =�ni + 1

24�t (9E
n+1
i +19En

i −5En−1
i +En−2

i ) (16)

Un+1
i =Un

i + 1
24�t (9F

n+1
i +19Fn

i −5Fn−1
i +Fn−2

i ) (17)
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Algorithm 1. Algorithm to numerically solve the Boussinesq equations.

1. Calculate
{
�n+1
i |i =1, . . ., N

}
from (14).

2. Calculate
{
Un+1
i |i =1, . . ., N

}
from (15).

3. Solve the tridiagonal system of equations (13) for
{
un+1

�i

∣∣∣ i =1, . . ., N
}
.

4. With the new �n+1
i and un+1

�i , calculate
{
En+1
i |i =1, . . ., N

}
from (11).

5. Calculate
{
�n+1
i |i =1, . . ., N

}
from (16).

6. With the new �n+1
i and un+1

�i , calculate
{
Fn+1
i |i =1, . . ., N

}
from (12).

7. Calculate
{
Un+1
i |i =1, . . ., N

}
from (17).

8. Solve the tridiagonal system of equations (13) for
{
un+1

�i

∣∣∣ i =1, . . ., N
}
.

9. Calculate

r� =
∑N

i=1|(�n+1
i )old−(�n+1

i )new|∑N
i=1|(�n+1

i )old|
and

ru =
∑N

i=1|(un+1
�i )old−(un+1

�i )new|∑N
i=1|(un+1

�i )old|
where subscripts old and new denote the corresponding previous and current values of the
iterative process 4–14.

10. if r� <10−4 and ru <10−4 then
11. Advance to the next time level and repeat procedure until end time is reached.
12. else
13. Goto step: 4.
14. end if

The first-order spatial derivatives in (11)–(13) are calculated using fourth-order accurate spatial
finite difference method, while higher derivatives are differenced to second-order accurate. With
this scheme, the calculation of (14)–(17) requires � and u� from five points to the left and right of
point-i , creating an 11-point stencil. Note that both �i and u�i are calculated at the same location.

Let there be N points in the domain, numbered−4, . . .,N+5 (Figure 2), with the extra five points
on the left and right sides of the domain acting as ‘imaginary’ points used to enforce the boundary
conditions. Suppose that the free surface elevation and velocity, {�mi ,um�i |i =−4, . . .,N+5,m=
n,n−1,n−2}, are given and hence {Em

i , Fm
i |i =1, . . .,N,m=n,n−1,n−2} can be calculated.

Given these initial values, the Boussinesq equations are solved using the procedure presented in
Algorithm 1.

The corrector steps, i.e. steps 4 to 8, require boundary values on the left at i ={−4, . . .,0} and
right side at i ={N+1, . . .,N+5}. On the left side the boundary values are provided using the
reflective boundary condition combined with the sponge layer [11] to damp out the incoming and
outgoing waves. On the right side, the boundary values are provided by the RANS model, and
will be discussed later in this paper.
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Figure 2. Boussinesq grid and RANS mesh.

3. RANS WAVE MODEL

3.1. Governing equation

The wave motion in the breaking zone (Figure 1) should ideally be modeled using the Navier–
Stokes (N–S) equations. This direct numerical simulation, however, is very expensive, requiring
a huge number of computational grid points to resolve turbulence length scales, and is generally
beyond the capability of current computing technology for all but very small-scale studies [12].
A statistical approach is commonly employed to perform a turbulence simulation. Here, both
the instantaneous velocity and pressure are split into the mean and fluctuating quantities: ui =
〈ui 〉+u′

i
‡ and p=〈p〉+ p′. The continuity and momentum equations are then time-averaged,

1/(t2− t1)
∫ t2
t1

(. . .)dt , where t2− t1 is long compared with that of the turbulent motion, to get the
time-averaged RANS equations that govern the mean flow and pressure:

�〈ui 〉
�xi

=0 (18)

�〈ui 〉
�t

+〈u j 〉�〈ui 〉
�x j

=− 1

〈�〉
�〈p〉
�xi

+gi + 1

〈�〉
�〈�i j 〉
�x j

− �〈u′
i u

′
j 〉

�x j
(19)

where � is the density and �i j is the stress due to molecular viscosity. This integration produces
the unknown correlation between the fluctuating velocities, the last term of (19), which represents
the transport of momentum due to the fluctuating motion. To close (19), a nonlinear eddy viscosity
model is used; here the k−� model is employed (see [3, 13] for details).

‡Since this is a 2-D problem in the x- and z-directions, the subscript i will have values 1 and 3 indicating both
directions, respectively.
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3.2. Numerical solution

The 2-D RANS computational domain is discretized into a rectangular mesh as shown in Figure 2.
This mesh employs the staggered grid system where the flow and pressure variables in a cell are
located at different locations; the horizontal velocity, u, is located at the midpoint of the vertical
edge, the vertical velocity, w, at the midpoint of the horizontal edge, and the pressure, p, F
(volume of fluid), k, and � in the center of the cell. Different shades in the mesh are used to
denote the physical cells (white) and the ghost cells (gray) added for the boundary condition
implementation.

The two-step projection method, as implemented in [14], is employed to solve (19), which is
time-discretized as follows:

ũn+1
i −uni

�t
=−unj

�uni
�x j

+gi +
��ni j
�x j

(20)

un+1
i − ũn+1

i

�t
=−1

�

�pn+1
i

�xi
(21)

For convenience, the 〈〉 are dropped and the sum of the molecular and turbulence stresses, the last
two terms of (19), is simply written as �i j . In the first step, the projected velocity field ũn+1

i is
first calculated without taking the pressure pn+1 into account. In the second step, (21) and (18)
are combined to get the pressure Poisson equation, which can be solved for the pressure pn+1:

�
�xi

(
1

�n
�pn+1

�xi

)
= 1

�t

�ũn+1
i

�xi
(22)

With ũi and pn+1 obtained from the previous steps, the solenoidal velocity field can be calculated
from (21) and accordingly using the k−� equations, the kinetic energy k and the energy dissipation
� may be calculated.

The solenoidal velocity calculated in the two-step projection method is later used to determine
the new volume of fluid distribution over the mesh via the advection equation:

�F
�t

+ui
�F
�xi

=0 (23)

Additional description of the volume of fluid method can be found in [14].
In summary, the computation in the RANS model is given in Algorithm 2. Suppose that in this

algorithm initially we have all the dependent variables (un , wn, pn, Fn, kn , and �n) in both the
physical and ghost cells.

In Algorithm 2 all the variables along the boundary and in the ghost cells reflect the type
of boundary conditions imposed on the associated sides of the domain. Relevant to the model
coupling are the boundary values on the left side of the domain overlapping with the right side
of the Boussinesq domain. On this side the inflow/outflow boundary condition, which requires
the specification of the flow velocity, pressure, kinetic energy, and energy dissipation along the
corresponding boundary/ghost cells, is imposed.While the specifications of the flow and turbulence
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Algorithm 2. Algorithm to numerically solve the RANS equations.
1. Calculate

{
ũnik, w̃n

ik |i =2, . . ., imax−1, k=2, . . ., kmax−1
}

from (20).

2. Solve (22) for
{
pn+1
ik |i =2, . . ., imax−1, k=2, . . . , kmax−1

}
.

3. Calculate
{
un+1
ik , wn+1

ik |i =2, . . ., imax−1, k=2, . . ., kmax−1
}
from (21).

4. Solve the k–� equations for{
kn+1
ik , �n+1

ik |i =2, . . ., imax−1, k= 2, . . ., kmax−1
}
.

5. Calculate
{
Fn+1
ik |i =2, . . ., imax−1, k=2, . . ., kmax−1

}
from (23).

6. Check if time step size, �t , satisfies the Courant (Cr ) stability condition: �t�
∣∣∣Cr�xi

ui

∣∣∣ , i =1, 3,

for all cells in the mesh. If �t>
∣∣∣Cr�xi

ui

∣∣∣ in some cells, set it to the smallest
∣∣∣Cr�xi

ui

∣∣∣.
7. Repeat the procedure until the end of the simulation.

boundary conditions are simply the imposition of the two variables on the boundary, this is not the
case with the pressure boundary condition. The pressure along the boundary, which is required in
step 2 of the algorithm, is given by the Neumann boundary condition ∇ p ·n=−1/�t(un+1− ũ)·n,
where n is the outward normal unit vector. It can be shown that with this boundary condition the
linear system of equations resulting from the centered-difference spatial discretization of (22) in
step 2 does not explicitly depend on pn+1 and ũ, but rather on un+1 ·n along the boundary (see,
for instance, [15]). This simply means that the system of equations depends implicitly on pn+1

and ũ through the Neumann boundary condition above. Therefore, solving the pressure Poisson
equation does not require the imposition of the pressure along the boundary.

4. RATIONALE OF MODEL COUPLING

Suppose that the offshore-to-shoreline wave propagation as depicted in Figure 1 is to be simulated
using the two models presented earlier, with the Boussinesq model being implemented in the
nonbreaking zone and the RANS model in the breaking zone. To perform these computations,
we should provide the boundary values on the side of each model located on the interface area.
To do this, the two subdomains must overlap so that one model can provide the other with boundary
values. Hence, from the computational point of view, the coupling of the Boussinesq and RANS
models is possible provided that the data exchange scheme can be formulated, which will be
explained in detail in the next sections.

In general and from the physics point of view, the two models cannot exchange appropriate
boundary values because both are derived under different assumptions. For instance, in the Boussi-
nesq model the flow is treated as irrotational and inviscid while in the RANS model it is rotational
and viscous. Clearly the two different flow properties cannot be exchanged. Turbulence accounted
for in the RANS is absent in the Boussinesq model, and therefore this property, which is one
of the boundary values mentioned above, is impossible to exchange between the two models.
However, in some situations certain properties of the physical problem may be so small that they
can be neglected in the calculation without sacrificing accuracy. If for instance the interface of
the two models is located in the nonbreaking zone and the wave under consideration satisfies the
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assumptions (weak dispersion and turbulence) made in the Boussinesq model, some quantities such
as turbulence and rotationality in the RANS model become unimportant, and can be neglected.
In such a case, data can be exchanged in a physically consistent context between the models.
Therefore, due to the difference in physics and assumptions in the two models, the interface area
must be located in the nonbreaking zone where the flow is relatively irrotational, the turbulence is
small, and the wave under consideration must be relatively long with respect to the water depth.

5. COUPLING TECHNIQUE

The Boussinesq and RANS model algorithms have been presented in detail in the previous sections.
To perform the calculations in each step of the algorithms, the interface boundary values should be
provided. Coupling the two models, and hence algorithms, will provide these values. Since some
steps require boundary values from the previous time steps and others from the current one, the
two algorithms should be so connected that in proceeding from one step to the next the boundary
values required in one model are always available from the other.

In Algorithm 1, the calculations in steps 1 to 3 require the boundary values from the previous
time levels, which are given by the RANS model at the interface. In Algorithm 2, step 1 requires
boundary values and variables given from the Boussinesq model at the interface from the previous
time level. The second step of this algorithm requires un+1

1k along the interface boundary. This
velocity can be obtained from the Boussinesq model, which calculates the new time level velocity
in step 3. Once the second step is finished, RANS steps 3 to 5 can be computed since all of
the computations in these steps are explicit. The corrector steps in the Boussinesq model can
also now be calculated with the new time level boundary values obtained from the RANS model.
To summarize, the hybrid computation is presented in Algorithm 3.

6. RANS BOUNDARY CONDITION

In Algorithm 3 the vertical profiles of velocities and the volume of fluid on the first column of the
RANS model mesh are obtained from the Boussinesq model. These variables, however, are not
immediately available from this model. To obtain these variables, certain transformations must be
done with � and u�. Figure 3 depicts the hybrid grid points on the interface. Shown in the figure
are the first column of the RANS model mesh with 18 computational cells§ and the grid points
N−2, N−1, N , and N+1 of the Boussinesq model. Note that grid point N of the Boussinesq
model is aligned with the right face of the first column in the RANS mesh.

To find the fluid distribution, F , in this column, we first determine �∗ in the middle of the
column at x∗ = xN −�x/2 by quadratically interpolating �N−2, �N−1, and �N :

�∗ = (x∗−xN−2)(x∗−xN−1)

(xN −xN−2)(xN −xN−1)
�N + (x∗−xN−2)(x∗−xN )

(xN−1−xN−2)(xN−1−xN )
�N−1

+ (x∗−xN−1)(x∗−xN )

(xN−2−xN−1)(xN−2−xN )
�N−2

§ In a typical simulation, each column of the RANS model mesh may have tens or hundreds of computational cells.
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Algorithm 3. Hybrid algorithm.
1. while tn < tend do
2. Calculate {�n+1

i |i =1, . . .,N } from (14).
3. Calculate {Un+1

i |i =1, . . .,N } from (15).
4. Solve the tridiagonal system of equations (13) for {un+1

�i |i =1, . . .,N}.
5. Calculate {ũnik, w̃n

ik|i =2, . . ., imax−1, k=2, . . .,kmax−1}
from (20).

6. Solve (22) for {pn+1
ik |i =2, . . ., imax−1, k=2, . . .,kmax−1}. This requires un+1

1k from
step 3.

7. Calculate {un+1
ik , wn+1

ik |i =2, . . ., imax−1, k=2, . . .,kmax−1} from (21).
8. Solve the k–� equations for {kn+1

ik , �n+1
ik |i =2, . . ., imax−1, k=2, . . .,kmax−1}.

9. Calculate {Fn+1
ik |i =2, . . ., imax−1, k=2, . . .,kmax−1} from (23).

10. With the new �n+1
i and un+1

�i , calculate {En+1
i |i =1, . . ., N } from (11). This requires

{�n+1
i , un+1

�i |i =N+1, . . .,N+5}.
11. Calculate {�n+1

i |i =1, . . .,N } from (16).
12. With the new �n+1

i and un+1
�i , calculate {Fn+1

i |i =2, . . .,N} from (12). Fn+1
1 is calculated

based on the corresponding Boussinesq elevation.
13. Calculate {Un+1

i |i =1, . . .,N } from (17).
14. Solve the tridiagonal system of equations (13) for {un+1

�i |i =1, . . .,N}.
15. Calculate

r� =
∑N

i=1|(�n+1
i )old−(�n+1

i )new|∑N
i=1|(�n+1

i )old|
and

ru =
∑N

i=1|(un+1
�i )old−(un+1

�i )new|∑N
i=1|(un+1

�i )old|
16. if ru <10−4 and r� <10−4 then
17. Repeat the procedure until the end of the simulation.
18. else
19. Goto step: 9.
20. end if
21. Check if time step size, �t , satisfies the Courant (Cr ) stability condition: �t�|Cr�xi

ui
|, i =1, 3,

for all cells in the mesh. If �t> |Cr�xi
ui

| in some cells, set it to the smallest |Cr�xi
ui

|.
22. if �t is changed then
23. Interpolate the new �n , �n−1, �n−2, un� , u

n−1
� , and un−2

� at all nodes on the Boussinesq grid.
24. end if
25. tn+1= tn+�t .
26. n=n+1.
27. end while
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Figure 3. Calculation of the fluid distribution in column 1 of the RANS model mesh based on the
Boussinesq model free surface elevation.

Then we search for the cell in which �∗ is located in the column. In the exemplified figure this
interpolated free surface elevation is located at cell 14. All the cells below it are full with F=1
and the cells above it are empty with F=0. For the free surface cell itself, F is calculated as the
ratio of the height of the interpolated free surface elevation, �, in the cell to the cell height, �z14:

F14= �

�z14
(24)

Equations (7) and (8) are employed to calculate the vertical structures of u along the right face
and w along the center of the first column of the RANS model mesh. Employing the second-order
centered finite difference formula on (7) at xN gives

uN (z) = u�N − 1

2
(z2−z2�)N

u�N+1−2u�N +u�N−1

�x2

−(z−z�)N
(hu�)N+1−2(hu�)N +(hu�)N−1

�x2
(25)

A similar scheme is employed to discretize (8) for the vertical velocity profile. As the reference
velocity grid point is not aligned with the center of the RANS mesh where the vertical velocity
is located, prior to the calculation, we first determine u� at x∗

N+1= xN+1−�x/2 and x∗
N−1=

xN−1−�x/2 by quadratic interpolation. Then the vertical structure of the velocity is calculated at
x∗
N = xN −�x/2:

wx∗
N
(z)=−z

u�x∗
N+1

−u�x∗
N−1

2�x
− (hu�)x∗

N+1
−(hu�)x∗

N−1

2�x
(26)
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The interface of the hybrid model will be located at the low turbulence area. In doing so, the
turbulence variables required along the first column of the mesh are small, as will be demonstrated
later in the model test simulation. Accordingly, transfer of turbulence variables from the Boussinesq
to the RANS model, as done in the imposition of the flow boundary condition, is not necessary
in the hybrid model. With this very weak assumption of turbulence at the interface, the employed
condition at this location for turbulence quantities is zero horizontal gradient.

7. BOUSSINESQ BOUNDARY CONDITION

The specification of the Boussinesq boundary condition is the inverse procedure described in
the previous section. In this procedure the reference velocity and the free surface elevation are
calculated based on the velocity, u, and the fluid distribution, F , in the RANS model. This
calculation is carried out on the five Boussinesq ghost grid points from N+1 to N+5. In this
section we describe the calculation of the boundary condition on the grid point N+1. The identical
procedure applies to the rest of the ghost grid points. Figure 4, a modification of Figure 3, depicts
the RANS–Boussinesq model grid system on the interface area. As shown the two models employ
different grid sizes. Without loss of generality, the Boussinesq grid is depicted here larger than
the RANS model grid, which will be typically the case. To determine the free surface elevation
and the reference velocity, we should first find the column in the RANS model mesh that aligns

Figure 4. Calculation of the Boussinesq model free surface elevation and reference velocity based on the
RANS model velocity and fluid distribution.
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with grid point N+1 of the Boussinesq model, i.e. column-i in Figure 4. Since in general the
center of the RANS column does not perfectly align with the Boussinesq grid point, quadratic
interpolation based on the RANS free surface elevations in column i−1, i , and i+1 is employed
to determine the Boussinesq free surface elevation at grid point N+1. Note that, in the RANS
model domain, the bottom of the lowest cell is assigned an elevation of 0. Accordingly, the RANS
free surface elevation, as measured from the still water level, in column-i of the RANS model
mesh is �i =di −d, where di is the height of the water in column-i and d the height of the still
water level (the same for all columns) in the RANS model mesh.

The reference velocity calculation starts with identifying the cell in the column of the RANS
model mesh where the reference level is located. In Figure 4 the reference level in column-i , for
instance, is located at cell 8. To determine the reference velocity to be given to the Boussinesq, a
quadratic polynomial of the form

ui =	+
(z−z�)+�(z2−z2�) (27)

is fitted to the three neighboring velocities u7, u8, and u9. Comparing (27) and (7), it is apparent
that the reference velocity is the zeroth-order coefficient of the polynomial u�i =	. A similar
procedure is employed to determine u�i−1 and u�i+1. Based on these three reference velocities,
u�N+1 is calculated via interpolation. It is reiterated here that the Boussinesq model does not
require any boundary values for vertical velocity or pressure. In the Boussinesq model, these are
explicit functions of the horizontal velocity and free surface elevation.

8. HYBRID MODEL TEST

To test the model for both the validity and relative speedup, we use the hybrid model to simulate
the following target scenarios:

(1) Solitary wave propagation.
(2) Standing wave motion.
(3) Sinusoidal wave overtopping of a seawall.
(4) Solitary wave overtopping of a levee.
(5) Hypothetical large-scale tsunami simulation.

In the first scenario, we consider the propagation of a solitary wave along a channel of constant
depth, where as an important property, the wave height is constant as the wave propagates. This
scenario is simulated using the hybrid model to see how well the model produces this property.
In the second test, the hybrid model is used to generate a standing wave in a channel of constant
depth. The wave is driven from one end of the channel toward a vertical, reflecting wall. This
wave is reflected back toward the origin and thus two waves opposite in directions meet on the
interface to create a standing wave. In the third simulation, the model is run to simulate the
wave overtopping of a seawall. The numerical data collected in this simulation is the mass flux
of the wave overtopping across the top of the structure. In the fourth simulation, we conduct the
simulation of the solitary wave overtopping of a coastal structure. The calculated free surface
elevation, before and after interaction with a levee, is recorded and compared with experimental
data. In the last simulation, a hypothetical tsunami in deep water is generated. The hybrid model
is employed to predict its evolution on the coast, including interaction with a breakwater.
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(a)

(b)

Figure 5. (a) Hybrid simulation setup for solitary wave propagation and (b) solitary wave form
centered at the coordinate origin and symmetrical about the z axis. Gray area occupies 95% of

the total water volume in the wave.

To measure the relative speedup of the hybrid computation, the first four scenarios are also run
using the RANS model in the whole domain, a ‘pure RANS model’ simulation. The CPU times
used by the pure RANS model to compute those scenarios are compared with the CPU times used
in the hybrid model. This comparison gives the relative speedup of the hybrid model.

8.1. Solitary wave propagation

The first test simulates the propagation of a solitary wave in a 0.5m deep and 100.0m long channel.
The domain is divided into two subdomains of equal lengths. The first 50.0m subdomain, xB, is
occupied by the Boussinesq model and the second 50.0m, xC , by the RANS model. The wave
is generated in the Boussinesq domain and propagates to the RANS model domain (Figure 5).
To observe the behavior of the model with respect to the wave height variations, two waves of
different nonlinearities, �=H/h, and dispersiveness, �=h/L, are considered in the test. While a
solitary wave is uniquely defined with only �, the dispersive parameter is included here to both
provide additional characterization of the wave and for use as a length scale. The solitary wave
length, L , appearing in �, is defined as the length of the symmetrical region in the solitary wave
(gray-colored area in part (b) of Figure 5), which contains 95% of the total volume of water [16].

The initial free surface elevation and velocity of the solitary wave that are used to drive the
model have the form

�= A1 sech
2[B(x−Ct)]+A2 sech

4[B(x−Ct)] (28)

and

u= A sech2[B(x−Ct)] (29)

The two equations are the analytical solution to the weakly nonlinear Boussinesq equation [8].
The derivation of the analytical solutions and the determination of the coefficients A, A1, A2, B,
and C may be found in [17].
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In the following two solitary wave simulations, the fluid viscosity and the turbulence in the
RANS model are set to zero. Hence both models are running under an inviscid (potential) flow
condition, with no means in the RANS model to generate vorticity.

In the first solitary wave simulation, a small amplitude wave of height 0.05m initially centered at
x=10.0m is used. The length of this wave in the 0.5m deep channel is 6.64m. The corresponding
nonlinearity and dispersiveness are �=0.1 and �=0.075, respectively. Both the Boussinesq and
RANS models use uniform spatial grids. The Boussinesq grid size is �x=0.125m and the RANS
grid sizes are �x=0.0625m and �z=0.0175m. In this simulation constant time step, �t=0.01s,
which corresponds to the Courant number Cr =0.18 in the Boussinesq model domain and Cr =0.35
in the RANS model domain, is employed. Here, the characteristic velocity used in the Courant
number is the constant, linear long wave speed. To save some computational time, the RANS model
starts its calculation when the free surface elevation of the Boussinesq model on the interface area
(which acts as the boundary condition in RANS model) exceeds a threshold, �threshold =10−5m. For
this particular simulation, there are no calculations in the RANS model domain for the first 13.0 s
of physical time or about 44.0% of the total time. In a huge computational domain, particularly
for transient wave studies, this procedure can save a significant amount of computational time.
This procedure is implemented for all the simulations in this study.

To see the evolution of the soliton as it propagates along the channel, several snapshots of the
free surface elevation, �, at different times are captured at 6 s interval (Figure 6). The distance
between two consecutive solitons is 13.9m. The soliton moves at 13.9/6.0=2.32m/s. As the
wave travels from the initial location to x=80.0m, the wave height is invariant. The wave is
correctly transmitted from the Boussinesq to the RANS domain. For comparison the simulation
is also carried out using the Boussinesq model for the full domain 0�x�100.0m. The wave profiles
of this simulation are shown in dots in Figure 6. Both the hybrid and full-Boussinesq model wave
profiles agree very well. Note the small, oscillatory tail following the soliton at later times in
both the hybrid and full-Boussinesq results; this is a common occurrence when using the weakly
nonlinear solitary wave solution in the fully nonlinear model [6].

In the second simulation, wave height is increased to 0.15m. The wavelength is 4.3m, shorter
than the previous wave, and thus the wave steepness is considerably larger here. The nonlinearity
is �=0.3 and the dispersiveness is �=0.12. For this simulation the spatial and temporal grids are
similar to the previous solitary wave simulation.

The snapshots of the soliton at 6.0 s temporal interval are presented in Figure 7. Here, the
wave moves at a constant speed of 2.51m/s, faster than the previous, smaller wave. The t=18.0s
soliton indicates that there is a smooth transition as the wave enters the RANS model domain
from the Boussinesq model domain. As the wave travels in the RANS model domain, however, the
wave height decays slowly as indicated by snapshots at t=24.0s and t=30.0s. From t=24.0s
to t=30.0s, there is a 2.9% wave height reduction. Another simulation using the pure RANS
model and employing the same wave and temporal/spatial grids confirms this decay (Figure 8).
This figure obviously shows that the wave undergoes damping as it propagates from its initial
position to t=15.0 s position. The wave at t=9.0 s, for instance, decays from 0.1366 to 0.1318m
at t=15 s, a 3.2% wave height reduction. As in the previous case, we also perform the full-
Boussinesq simulation and the result is also presented in dots in Figure 7. The figure shows that the
wave height of the full-Boussinesq run is invariant in the course of the simulation. From t=18.0
to 30.0 s, the soliton in the hybrid model, as a result of being smaller, lags slightly behind the
full-Boussinesq wave, which is apparent in the close-up snapshot at t=30.0 s. The wave height
decay is due to numerical dissipation in the RANS model.
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Figure 6. Solitary wave (�=0.1, �=0.075) propagation in a 0.5m deep channel simulated
using the hybrid wave model. 0�x�50 is Boussinesq model, 50�x�100 is RANS model,

and dots are the full-Boussinesq model.

Similar simulations using the RANS model on the whole domain are carried out to measure
the relative speedups of the hybrid simulations. The temporal and spatial grids for the pure RANS
simulations are similar to RANS model grids in the hybrid simulations. Hence, the total number
of the RANS model horizontal computational grid points in these simulations is twice as many as
in the hybrid model, while the number of vertical grid points remains unchanged. For the hybrid
model, the computational clock time for the 0.05m wave is 312.0 s and for the 0.15m wave 317.0 s.
The same simulations using the RANS model take 1260.0 and 1328.0 s for the 0.05 and 0.15m
waves, respectively. These computational clock times correspond to 30.4 s simulation and are run in
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Figure 7. Solitary wave (�=0.3, �=0.12) propagation in a 0.5m deep channel simulated
using the hybrid wave model. 0�x�50 is Boussinesq model, 50�x�100 is RANS model,

and dots are the full-Boussinesq model.

a 3.0GHz Pentium processor. The speedup factors gained by the hybrid model are 4.0 for the first
wave and 4.2 for the second. In both the hybrid simulations the RANS-start threshold is reached
at 13.4 s (44.0% of the total) simulation time and takes 25.0 s (8.0% of the total) computational
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Figure 8. Solitary wave (�=0.3, �=0.12) propagation in a 0.5m deep channel
simulated using the RANS model.

clock time. This comparison demonstrates that the threshold procedure can save, for these particular
cases, 44.0% effort to run RANS in the hybrid model from the beginning.

8.2. Standing wave motion

In the following test, the hybrid wave model is used to simulate standing wave motion. The standing
wave is created by superimposing two sinusoidal waves of the same height, H , moving in the
opposite directions in a channel of constant depth, h, as shown in Figure 9. Here, the numerical
channel is 72.0m long, 0.5m deep, and divided into two subdomains of equal lengths. The left
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Figure 9. Hybrid model setup for standing wave simulation.

subdomain, xB, is occupied by the Boussinesq model and the right one, xR, by the RANS model.
Both ends of the channel are impermeable walls and thus act as reflecting boundaries. Adjacent to
the left boundary, a sponge layer is installed to damp out all the waves that enter the sponge layer
area. For wave generation, we employ the internal source method [11]. Identical sinusoidal waves
with height, H , propagate from the source to both the left and right directions. The wave that
propagates to the left is damped out by the sponge layer and the one to the right will propagate
along the Boussinesq and the RANS domains. As the wave reaches the right boundary in the
RANS domain, it is reflected and propagates back toward the wave source and superimposes with
the incoming wave to create the standing wave.

In the first test of this simulation, a relatively small wave, of 0.01m in height with a period of
4.0 s, is generated 5.0m to the right of the left boundary. A 3.0m sponge layer is located adjacent
to the left boundary as the damping mechanism. From the dispersion relationship, this wave has
a wavelength of 8.7m. The nonlinearity and the dispersiveness of this wave are then �=0.02
and �=0.06, respectively. The Boussinesq domain is discretized into uniform grid, �x=0.08m.
Similarly, the RANS domain is uniformly discretized both horizontally, �x=0.04m, and vertically,
�z=0.001m. The simulation is run for 100.0 s with the constant time step �t=0.009s and zero
viscosity and turbulence.

Figure 10 depicts the instantaneous wave profiles at six different instants. The first three profiles
show the wave propagating to the right and reaching the wall at t=31.0s. Within this period
the wave in the channel is not contaminated by the reflected wave from the right boundary and
the height is still 0.01m. Afterwards, the reflected wave starts propagating in the channel and is
superimposed with the wave from the source. Since the two waves are identical and 180◦ out
of phase, this superposition results in a standing wave in the channel with height 0.02m, i.e.
twice the original wave height. In all the snapshots the wave profile on the interface is smooth.
Also, for comparison, the full-Boussinesq model simulation is carried out and the corresponding
instantaneous profiles are plotted in the figure in dots. The two simulations are in good agreement.

Although the wave source input is linear (single harmonic), the wave undergoes some nonlinear
evolution due to the nonlinear governing equations employed in both the Boussinesq and RANS
models. The higher the nonlinearity, �, the stronger the interaction. In the first case the nonlinearity
is relativity small and its effect might not be so obvious in the wave profiles in Figure 10. Looking
at the profile from a different perspective, for instance in the frequency domain, the nonlinearity
effect becomes apparent. Figure 11 gives the amplitude spectrum of the time series of the free
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Figure 10. Standing wave (�=0.02, �=0.06) motion in a 0.5m deep channel simulated
using the hybrid model. 0�x�36 is Boussinesq model, 36�x�72 is RANS model,

and dots are the full-Boussinesq model.

surface elevation at x=38.0m. This particular time series is recorded before the reflected wave
reaches the recording location. This spectrum clearly shows that the initially monochromatic wave,
in the course of the propagation, transforms into a polychromatic wave. In the spectrum, there are
two distinct spikes corresponding to f1=0.25Hz and f2=0.5Hz. Note that the frequency of the
original signal is f =0.25Hz. Here, the first harmonic, f1, interacts with itself resulting in the
second harmonic, f2= f1+ f1. The interaction of the two harmonics, f1 and f2, is not too strong
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Figure 11. Amplitude spectrum of the free surface elevation time series of the �=0.02 standing wave
simulation. The time series is recorded at x=38.0m before the reflected wave reaches this location.

in this case as there is no other distinct spike occurring in the spectrum. In the next test, as the
wave height becomes higher, the effect of nonlinearity is stronger.

In the second test, the wave height is increased to 0.05m, with a nonlinearity of �=0.1.
The model setup remains the same as in the previous test. Figure 12 shows snapshots of the wave
profiles as the wave propagates in the channel. Here, a smooth transition is again observed on
the interface of the two models. Although there is very slight discrepancy between the hybrid and
full-Boussinesq profiles, in general the two simulations show good agreement. The wave profile
differs from the profile in the previous test in two ways: a wider trough and an occurrence of a
secondary crest on the trough, which is due to the nonlinearity effect. The amplitude spectrum
shown in Figure 13 has three distinct harmonics: f1, f2, and f3. The first two harmonics are at the
same frequencies as in the previous case. The interaction between the first and second harmonic
results in the third harmonic whose frequency is f3= f1+ f2=0.75Hz. This harmonic is obvious
here, not in the previous test, since the amplitudes of the interacted harmonics, i.e. f1 and f2, are
much higher in this test than the previous one.

In addition to the hybrid and full-Boussinesq simulations, we also simulate both cases of the
standing wave motion using the RANS model for speedup comparison. The RANS model is applied
on the whole domain with the same grid sizes as in the hybrid-RANS model. In the horizontal
direction the number of computational grid points is twice as many as the grid points in the
hybrid-RANS model mesh, and in the vertical direction both setups employ the same number of
grid points. Therefore, in total, the number of grid points in the pure-RANS model is twice the
number of grid points in the hybrid-RANS model. Both the pure-RANS and hybrid simulations
are carried out in a 3.4GHz Pentium processor for 400.0 s simulation time. In the first standing
wave test, the hybrid model spends an average of 321.0 s for one wave period simulation while
the pure-RANS model takes about 592.0 s. Hence, in the first test we gain a 1.8 factor of speedup.
In the second test, for one wave period the hybrid and full-RANS models spend 248.0 and 592.0 s,
respectively, and the gained speedup is 2.4.

8.3. Flux of sinusoidal wave overtopping

As reported in [18] the Beach Erosion Board (BEB) conducted a laboratory experiment in the
Waterways Experiment Station of the Corps Engineers, at Vicksburg, Mississippi, to study wave
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Figure 12. Standing wave (�=0.1, �=0.06) propagation in a 0.5m deep channel
simulated using the hybrid model. 0�x�36 is Boussinesq model, 36�x�72 is RANS

model, and dots are the full-Boussinesq model.

run-up and overtopping of shore structures. The experiment was conducted in a concrete wave
flume 36.6m long, 1.52m wide, and 1.52m deep. The model was an undistorted scale model with
1:17 length scale and 1:4.1 time and velocity scales. A wave maker was used on the upstream side
of the flume for wave generation. Downstream of the flume, shore structures of various shapes
(smooth slope, curve-faced wall, recurved wall, etc.) were built. Behind the structure a calibrated
measuring tank was installed for collecting the overtopping water. The water from the first three
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Figure 13. Amplitude spectrum of the free surface elevation time series of the �=0.1 standing wave
simulation. The time series is recorded at x=38.0m and before the reflected wave reaches this location.

Figure 14. Experimental setup of the sinusoidal wave overtopping by the Beach
Erosion Board; figure is not scaled.

or four waves was discarded to allow for the wave to attain a stable condition, after which the
water from six or seven waves was collected in the tank for an overtopping flux measurement.

In this study, numerical simulations are undertaken of the BEB flux overtopping experiment
using the hybrid model whose setup is given in Figure 14. For the simulation comparisons, the
smooth structure data, as used by the previous researchers [19, 20] in their overtopping studies,
are employed here. In the numerical simulations the wave is generated using the sinusoidal wave
source combined with the sponge layer on the left boundary for damping. This approach is different
from those used in [19, 20], where depending on the Ursell number, Ur , at the model boundary, ht ,
Stokes or Cnoidal waves are used to drive the simulations, although the wavemaker in the physical
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Figure 15. RANS computational mesh for hybrid simulation of BEB sinusoidal wave overtopping.

experiments created single harmonic waves only. In all the experiments, the structure with slope
1:s was fronted by a fixed 1:10 inclined floor. The domain is divided into the Boussinesq model
subdomain, xB , and RANS model subdomain, xR .

The model interface is located near the toe of the 1:10 floor where turbulence is small and
the wave does not yet break. In all the simulations, this interface divides the domain into the
two subdomains with ratio xB/xR ∼7. The height of the RANS domain, yR, is large enough to
prevent the overtopping wave from reaching the RANS model top boundary. For this simulation,
the Boussinesq model domain is discretized into a uniform grid, �x , and the RANS model domain
is discretized, for efficiency, into nonuniform horizontal grid, �x , and uniform vertical grid, �z, as
depicted in Figure 15. As shown in the figure, the mesh is relatively coarse near the left boundary
and finer around the crest to allow for an accurate flux measurement. In addition for efficiency, a
dynamic time step, �t , is employed in both the RANS and Boussinesq models; when the time step
changes, free surface and velocity values at the previous time levels are interpolated or extrapolated
to fit on a uniform time grid.

The flux is computed at the back edge of the structure and given by

q=
nt∑
n=1

kmax∑
k=1

Fn
ki u

n
ki�zk�t

n (30)

The indices i and k correspond to a cell in the column along which the flux is computed. Since
some cells might be not full, Equation (30) includes the corresponding value of the volume of
fluid, Fn

ki . n=1 and nt are the time indices that correspond to the starting/ending times of the
water collecting.

As in the BEB experiment, the simulation is run under various geometrical setups with different
combinations of variables including the offshore depth, h, the depth at the toe of the structure,
hs , free board height, hc, slope of the structure, s, wave height, and period. These variables,
the experimental data, the computed hybrid model fluxes, and the published results from [19, 20]
are presented in Table I. In general the computed fluxes are in good agreement (slight differ-
ence) with the experimental data and consistent with the results of the previous two researchers.
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Table I. Experimental and simulated fluxes of the BEB sinusoidal wave overtopping.

h hs hc H T q†data qKW qOTT qhyb
Run∗ (m) (m) (m) (m) (s) (m2/s) (m2/s) (m2/s) (m2/s)

1 0.529 0.081 0.054 0.107 1.549 0.0073 0.0030 0.0039 0.0032
2 0.529 0.081 0.107 0.107 1.549 0.0004 0.0003 0.0007 0.0003
3 0.609 0.161 0.054 0.107 1.549 0.0071 0.0058 0.0066 0.0075
4 0.609 0.161 0.107 0.107 1.549 0.0040 0.0015 0.0019 0.0055
5 0.609 0.161 0.054 0.081 1.858 0.0065 0.0058 0.0062 0.0062
6 0.529 0.081 0.054 0.107 2.616 0.0066 0.0060 0.0074 0.0071
7 0.529 0.081 0.107 0.107 2.616 0.0019 0.0018 0.0025 0.0030
8 0.529 0.081 0.161 0.107 2.616 0.0044 0.0002 0.0007 0.0012
9 0.609 0.161 0.054 0.107 2.616 0.0104 0.0100 0.0118 0.0128
10 0.609 0.161 0.107 0.107 2.616 0.0044 0.0050 0.0064 0.0069
11 0.609 0.161 0.161 0.107 2.616 0.0009 0.0018 0.0028 0.0024
12 0.529 0.081 0.054 0.081 3.634 0.0065 0.0070 0.0076 0.0063
13 0.609 0.161 0.054 0.081 3.634 0.0093 0.0081 0.0086 0.0086
14 0.609 0.161 0.107 0.081 3.634 0.0055 0.0037 0.0044 0.0026
15 0.609 0.161 0.161 0.081 3.634 0.0018 0.0011 0.0016 0.0015
16 0.609 0.161 0.215 0.081 3.634 0.0008 0.0011 0.0002 0.0004
17 0.529 0.081 0.054 0.107 2.616 0.0054 0.0073 0.0069 0.0064
18 0.529 0.081 0.161 0.107 2.616 0.0014 0.0009 0.0008 0.0016
19 0.448 0.000 0.054 0.107 2.616 0.0043 0.0044 0.0041 0.0030
20 0.448 0.000 0.107 0.107 2.616 0.0022 0.0008 0.0009 0.0004

∗Runs 1–16 use s=3 and runs 17–20 use s=1.5.†Flux is presented in dimensional form instead of dimensionless form as in [19].

The slight discrepancies in these results are attributed to the small differences in the modeled
physics and numerical accuracy in the non-breaking part of the domain. This datum also demon-
strates the relatively wide variability that can be found in published overtopping predictions,
particularly for low overtopping rates.

As previously explained, the interface of the model should be located such that the turbulence
intensity on the interface is small. To provide insight into this, in Figure 16 the instantaneous
intensity of the turbulent kinetic energy, k, for run 1, is given. This figure shows that the inten-
sity of the turbulent kinetic energy, k, is high near the structure compared with other locations.
The kinetic energy near the structure is roughly 10−2m2 in contrast to a value less than 10−2m2

on the interface. As the wave approaches the structure, the wave height to depth ratio becomes
so large that the wave breaks while impinging on the structure and hence releases kinetic energy.
Figure 16 also indicates that in the course of the simulation the location of the turbulence hot spot
remains close to the crest of the structure while the interface area is always low in kinetic energy.
This satisfies the requirement that the turbulence intensity should be low on the interface.

To benchmark the simulation time, five of the previous simulations are re-run using the RANS
model in the whole domain. Table II presents the run times per wave period for both the hybrid and
pure-RANS wave models for the five selected runs. In discretizing the pure-RANS model, the part
of the hybrid domain where the RANS model is applied uses an identical mesh as in the hybrid
case. Offshore of this point, where the Boussinesq model is used in the hybrid model, the pure-
RANS model domain is uniformly discretized with a grid size equal to the grid size at the hybrid
interface location.
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Figure 16. Turbulence kinetic energy distribution of the BEB sinusoidal wave overtopping, run 1.

The computational times of both the hybrid and pure-RANS simulations are summarized in
Table II. From this table it is clear that the speedup due to use of the hybrid model is significant,
ranging from a factor of near 10.0 (run 18) to over 17.0 (run 3 and 5). This large speedup is of
course due to the smaller RANS mesh used in the hybrid model. However this difference is two
fold: a single iteration of the Poisson pressure solver requires less time with a smaller matrix and
a smaller matrix will converge in fewer iterations of the Poisson solver.
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Table II. Computation time per wave period of the BEB sinusoidal wave overtopping, runs 3, 5, 9, 18,
and 19. AH and AR are the ‘areas’, the product of the number of grid points in the x- and z-directions,

nx×nz, of the meshes employed in the hybrid and pure RANS models.

Hybrid RANS

nx×nz t Flux nx×nz t Flux
Run (AH ) (s) (m2/s) (AR) (s) (m2/sec) AR/AH Speedup

3 118×72 16.7 0.0075 798×86 269.8 0.0075 8.1 16.2
5 118×82 26.2 0.0062 798×98 454.7 0.0061 8.1 17.4
9 262×76 85.6 0.0128 826×122 1259.2 0.0122 5.1 14.7
18 149×72 25.5 0.0016 845×72 242.6 0.0010 5.7 9.5
19 115×52 10.5 0.0030 811×56 120.8 0.0032 7.6 11.5

Figure 17. Experimental setup of the HR solitary wave overtopping.

8.4. Free surface elevation of solitary wave overtopping

In 1996, Hydraulic Research (HR) Wallingford in the U.K. performed an experiment on solitary
wave overtopping of a breakwater. The experimental setup is given in [20] and depicted here in
Figure 17. The wave flume used in this experiment was 40.0m long and 0.5m wide and filled with
water to h1=0.7 or 0.6m seaward of the breakwater and h2=0.3 or 0.2m behind the breakwater.
A breakwater with 1:4 or 1:2 slope was built at the right end of the flume. This breakwater, which
is 0.5m high and 0.16m wide on the top, was fronted by a 1:50 inclined floor. To measure the
free surface elevation of the overtopping water, a series of wave gauges were installed on top of
and behind the breakwater. The first gauge, WG-13, was located 0.015m behind the leading edge
(A), the second, WG-14, and third, WG-15, gauges were installed 0.055 and 0.11m from the first
gage, respectively. Depending on whether the first or second depth was used, the fourth gage,
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Table III. Wave height and water depth of the HR solitary wave overtopping.

Test H (m) h1 (m) h2 (m) WG-16∗ (m)

4c7a 0.07 0.7 0.3 0.72
4c7b 0.10 0.7 0.3 0.72
4c7c 0.12 0.7 0.3 0.72
4c6a 0.07 0.6 0.2 1.10
4c6b 0.10 0.6 0.2 1.10
4c6c 0.12 0.6 0.2 1.10
4c6d 0.15 0.6 0.2 1.10

∗Distance from the backedge B in Figure 17.

WG-16, was located 0.72 or 1.1m behind the back edge (B) of the breakwater. The last gauge
was fixed 0.44m behind the back toe (C) of the breakwater. The experiment was conducted for
several solitary wave heights and water depths as given in Table III.

The simulation setup is very similar to the one used in the BEB simulation where the uniform
Boussinesq grid is coupled with the RANS nonuniform x- and uniform z-grids. The interface
divides the domain into two segments, xB and xR , with ratio xB/xR ∼9. A dynamic time step is
also employed in the simulation. In all tests the initial location of the solitary wave is 10.0m from
the left boundary of the Boussinesq domain.

The time series of the free surface elevation of the hybrid simulations and the experimental
data are presented in Figure 18. For comparison the numerical simulation data from [20] (called
OTT), using a nonlinear shallow water wave equation model, are also given in the same figures.
In all the simulations, the hybrid wave model shows a clear bias toward overpredicting the water
elevation on top of the structure. This is consistent with the OTT simulations, which show an even
larger bias. On the lee side of the breakwater, the hybrid simulations in general agree quite well
with the data, with a remarked improvement over the shallow water equation-based OTT.

The relative speedup is also measured for this case. The discretization of the pure-RANS domain
is almost the same as in the previous BEB discretization. The only difference is that to save
computational time in the pure-RANS simulations, the domain offshore of the interface location
of the hybrid model is discretized nonuniformly, with an increasingly coarse grid in the deeper
water. The computation times of both the hybrid and pure-RANS simulations are summarized in
Table IV. As with the speedups in the BEB tests, the reduction in CPU time shows a factor greater
than the decrease in RANS domain size. This, again, is due to the Poisson solver requiring fewer
iterations to converge with a smaller matrix size.

8.5. Hypothetical tsunami simulation

In many tsunami events, such as the devastating tsunami that struck the West Sumatera Coast in
2004, the wave is generated by a sudden uplift or subsidence of the seafloor following a massive
tectonic earthquake. The vertical displacement of the seafloor disturbs the equilibrium of the water
column above it and in consequence the water mass spreads as a long wave to attain a new
gravitational equilibrium.

In the last model application, the hybrid wave model is used to simulate the propagation of a
tsunami-type wave from the open ocean to the coast. The simulation setup is given in Figure 19.
The domain consists of a 1.0 km deep ocean connected with a 1:50 seafloor. A 4.0m elevation

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2009)
DOI: 10.1002/fld



K. I. SITANGGANG AND P. J. LYNETT

Figure 18. Time series of the free surface elevation of the HR solitary wave overtopping.

breakwater is placed along the coast in a shallow water depth of approximately 3m. For the
hybrid simulation, the Boussinesq model occupies 93.0% of the total horizontal domain length;
the RANS model occupies only 7.0%, which is located in the nearshore region. The domains
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Table IV. Computation time of HR solitary wave overtopping.

Hybrid RANS

Test nx×ny (AH ) t (s) nx×ny (AR) t (s) AR/AH Speedup

4c7a 303×122 746 610×202 3605 3.3 4.8
4c7b 419×122 1613 765×202 7580 3.0 4.7
4c7c 461×122 2494 862×202 9930 3.1 4.0
4c6a 395×142 2236 746×202 9134 2.7 4.1
4c6b 435×122 2367 821×202 12 303 3.1 5.2
4c6c 435×122 2518 821×202 15 126 3.1 6.0
4c6d 435×122 2573 821×202 10 951 3.1 4.3

Figure 19. Simulation setup of the hypothetical tsunami generation and propagation. Figure is not scaled.

of the Boussinesq and RANS models are uniformly discretized into �x=15.0m and �x =4.0m
and �z=0.5m grids, respectively. The simulation is run with a dynamic time step for 1500.0 s of
simulation time. The wave is generated 100.0 km offshore by uplifting the sea surface to form a
Gaussian shape wave with zero initial velocity. The generated wave has an offshore wavelength
of roughly 10.0 km, and thus might represent the leading wave of a leading elevation tsunami.

Figure 20 shows snapshots of the wave at three different times. At t=1070.0s the wave has just
reached the detached breakwater with a turbulent wave front that appears as an 18.0m high wall
of water moving at a speed of nearly 10m/s. The second snapshot in Figure 21 gives the wave at
t=1140.0s. Just 70.0 s after the wave reaches the breakwater, the coast is flooded up to 1.6 km
inland. The average flow depth in the flooded area is 13.0m, with a 16.0m/s average speed. The
bottom part of the figure shows the detail of the flow around the breakwater. At the upstream
side the flow moves 6.0m/s and due to the breakwater acting as a sill, the velocity increases
nearly three times to 17.0m/s at the leeward side of the breakwater. In addition note the regions
of separation at the breakwater corners, indicated by a relatively low fluid speed. Figure 22 shows
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Figure 20. Snapshot of tsunami wave reaching the breakwater.

Figure 21. (Top) Snapshot of tsunami wave passing the detached breakwater and (bottom) close-up look
of velocity near the breakwater.

Figure 22. Snapshot of tsunami wave inundating the coast at the time of maximum run-up.
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the tsunami at maximum run-up. At this stage, about 4.0min after the wave front first reaches the
breakwater, the water has inundated 2.3 km of the coastal area.

For this model test, a time benchmark is not done as in the previous model tests. With current
computing limitations, it is not practically possible to run the whole simulation with the RANS
model without some type of parallel implementation of the model, which is not the focus here.
Thus, this example demonstrates the potential of the hybrid model to routinely tackle multi-scale
problems that would otherwise require significant computational capacity.

9. CONCLUSION

A hybrid wave model is developed that two-way couples numerical models based on the 1HD
inviscid Boussinesq-equations and the 2-D viscous turbulence-closed RANS equations. The hybrid
model is intended for large-scale wave simulation, which from either the accuracy or computational
point of view is not possible to carry out using either model alone. The Boussinesq model will
typically solve a large spatial portion of the computational domain, from the wave generation area
to the pre-breaking zone with good accuracy and minor CPU needs. Coupled with the RANS
model, turbulence and breaking waves in the nearshore can be simulated with high accuracy.

The model tests suggest that the current hybrid model is able to perform a broad range
of nonbreaking/breaking wave tasks, from small-scale analytical and laboratory experimental
scenarios to large-scale tsunami simulation, with good accuracy and efficient computational time.
The primary deficiency of the presented model is that the location of the interface must be specified
a priori. As mentioned, this location should be situated where turbulence is very low, such that
both models are correctly describing the local physics. Ideally, the interface would be dynamically
located, and allowed to move either landward or seaward as the local conditions dictate. The
implementation of such a dynamic interface relies more on coding flexibility than the implemen-
tation of a correct physical boundary condition, as is the focus of this paper, and is left as a future
enhancement to be incorporated into the coupling presented here.

For future studies, the hybrid algorithm herein can be readily employed to extend the model
coupling to the 2HD Boussinesq and 3-D RANS wave models, as the numerical algorithms of
the higher-dimension models remain the same. For large-scale simulation with detailed turbulence
computation inside the breaker zone, the computational time is very high. This is of course due
to the huge number of computational grid points employed in the finer RANS mesh. Integrating
a parallelized RANS solution scheme into the hybrid model could greatly reduce the wall clock
time, and may further facilitate the regular use of the hybrid and RANS models by engineers and
scientists.
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