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SUMMARY

Implementations of the Boussinesq wave model to calculate free surface wave evolution in large basins
are, in general, computationally very expensive, requiring huge amounts of CPU time and memory. For
large scale problems, it is either not a�ordable or practical to run on a single PC. To facilitate such
extensive computations, a parallel Boussinesq wave model is developed using the domain decomposi-
tion technique in conjunction with the message passing interface (MPI). The published and well-tested
numerical scheme used by the serial model, a high-order �nite di�erence method, is identical to that
employed in the parallel model. Parallelization of the tridiagonal matrix systems included in the se-
rial scheme is the most challenging aspect of the work, and is accomplished using a parallel matrix
solver combined with an e�cient data transfer scheme. Numerical tests on a distributed-memory super-
computer show that the performance of the current parallel model in simulating wave evolution is very
satisfactory. A linear speedup is gained as the number of processors increases. These tests showed that
the CPU time e�ciency of the model is about 75–90%. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The calculation of wave propagation from deep to shallow water has long been a challenging
problem among ocean=coastal engineers and scientists. As waves propagate from deep to
shallow water, the wave �eld is transformed due to physical processes such as shoaling,
refraction, and di�raction. The ability to accurately evaluate wave transformation depends not
only on the computational method used to solve the equations governing the wave propagation,
but also on the chosen governing equations themselves.
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The Boussinesq equation model has been used for decades to simulate wave propaga-
tion from relatively deep to shallow water. Peregrine [1] derived the ‘conventional’, depth-
averaged, Boussinesq equation that can be applied on variable bathymetry. This equation can
be used for simulating nonlinear, multidirectional waves with kh values less than roughly 0.3,
where k is the wavenumber and h the water depth. The application of this equation for larger
kh does not produce accurate prediction of wave transformation due to a poor description
of frequency dispersion. In the last decade, the accuracy limitations of the Boussinesq-type
model have been pushed into deeper water, led by the works of Madsen and S�rensen [2]
and Nwogu [3]. By modifying the depth-averaged Boussinesq model through manipulations of
the dispersive terms, Madsen and S�rensen [2] created a model with good accuracy through
the intermediate water regime. Nwogu [3] expressed the Boussinesq equations in terms of the
velocity at some arbitrary elevation, and with the proper choice of this elevation developed a
model with linear accuracy to kh∼ 3. While these works increased dispersive accuracy, they
are still limited by the weakly nonlinear assumption.
Wei et al. [4] derived a highly nonlinear Boussinesq equation model by keeping nonlinear-

dispersive terms in the model, which were truncated by Nwogu [3]. This model of Wei et al.,
exhibits excellent linear dispersive properties to kh∼ 3, while shoaling, wave kinematics, and
nonlinear interactions are generally well captured to kh∼ 1. A number of researchers have
made modi�cations and enhancements to this model, including Kennedy et al. [5] to optimize
the model nonlinearity and Lynett and Liu [6], who included additional terms associated with
the time dependency of the bathymetry, in order to examine the waves generated by submarine
landslides. In solving the highly nonlinear equations, Lynett and Liu [6] use the high order
�nite di�erence method given by Wei et al. [4], however with slight di�erences in how some
of the nonlinear dispersive terms are treated.
Further increasing the deep-water accuracy of the Boussinesq-type model are a number of

‘high-order’ derivations. Gobbi et al. [7] extended the model of Wei et al. [4] to the next
order in (kh)2, doubling the linear dispersion accuracy to kh∼ 6. Madsen et al. [8], building
o� the derivation of Agnon et al. [9], used multiple expansions at various elevations leading
to a model with linear and nonlinear accuracy to kh∼ 40. Lynett and Liu [10, 11] created
a ‘multi-layer’ concept, wherein the water column is divided into arbitrarily spaced layers.
Accuracy of this model is dependent on the number of layers used, and can be extended into
extremely deep water.
Application of the Boussinesq equations covers a broad spectrum of ocean and coastal

problems of interest, from wind wave propagation in intermediate and shallow water depths
to the study of tsunami wave propagation across large ocean basins. In many cases of practical
interest, large physical domains (O(10km2)), which require a huge number of �nite di�erence
computational grids, are inevitable. In such circumstances, not only can the PC memory size
be too small to carry out the computations, but also a very large CPU time is required.
To facilitate such computational demand, computational tasks can be distributed into several
processors so that each processor is responsible for a smaller computational sub-task only.
This idea underlies the present work of parallelizing a serial Boussinesq model. The parallel
Boussinesq model to be developed will use the algorithm of the serial model, employing
domain decomposition to create an e�cient parallel model, capable of simulating wind waves
in coastal basins (O(100km2)) on modest-sized clusters. The implementation of the proposed
parallel algorithm on the distributed system is done by employing the commonly used message
passing interface (MPI) library [12].
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This paper is organized as follows. Section 2 presents the highly nonlinear Boussinesq
equations that govern wave propagation, followed by Section 3 that gives the �nite di�er-
ence discretization of the corresponding governing equations. In Section 4, the parallelization
strategy is explained in detail. In Section 5, both the validity and performance of the parallel
model are tested using idealized cases, where analytical solutions or experimental data exist.

2. GOVERNING EQUATIONS

The parallel Boussinesq model developed in this paper is based on its serial counterpart as
can be found in Reference [6]. The governing equations that are used in this serial model
(and also in this paper) consist of the two-dimensional depth-integrated continuity equation:
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where S=∇·u�, T =∇·(hu�)+ @h=@t, h is depth, � is free surface elevation, H = h+ �, u� is
horizontal velocity vector, z� is reference depth, and t is time.
In both equations, it is assumed that the frequency dispersion is weak and the nonlinearity

can be large. The velocity variable, u�, is evaluated at an arbitrary elevation, z� (in the present
work, z�=−0:531h), which is chosen such that the resulting frequency dispersion character-
istics of the Boussinesq model agree well with linear theory [3]. Equations (1) and (2) di�er
from the equations given by Wei et al. [4] in the inclusion of the time derivatives of the depth
(ht; htt) to account for temporal bottom pro�le changes that occur during landslide=earthquake,
which is one of several possible sources of tsunami.

3. FINITE DIFFERENCE SOLUTION

The �nite di�erence solution of the governing equations (1) and (2) is given in Lynett and Liu
[6], which is based on the formulation presented in Wei et al. [4]. The �nite di�erence scheme
consists of the third-order in time explicit Adams–Bashford predictor step and fourth-order
in time implicit Adams–Bashford corrector step [13]. The spatial derivatives in (1) and (2)
are evaluated to fourth-order accuracy. Details of the �nite di�erence method can be found
in Reference [6]. Here, for convenience, the corresponding �nite di�erence discretization is
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given. The explicit predictor equations are
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The procedure to solve governing equations (1) and (2) is to �rst predict the solution (�n+1,
un+1, and vn+1) via the explicit predictors (3), then solving (5) and (6) to determine un+1,
and vn+1 from the intermediate variables U and V . To �nd un+1, and vn+1 from (5) and (6),
tridiagonal systems of linear equations must be solved. Next, the predicted values must be
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iterated using the implicit correctors (4) until the solution converges. During each iteration
of the corrector step, the tridiagonal systems of (5) and (6) must also be solved. For the
iteration to halt, the maximum local relative error, which is de�ned as

∣∣∣∣w
n+1 − wn+1∗
wn+1

∣∣∣∣ (13)

where w represents �, u, and v, and w∗ are the previous iterated values, must be less than
10−4.

4. PARALLELIZATION STRATEGY

The higher order �nite di�erence scheme [6] for solving the Boussinesq equations has an
identical spatial �nite di�erence stencil for each time level (i.e. n − 2, n − 1, n, and n + 1)
and for both the predictor and corrector steps (Figure 1). In both steps, the calculations of
the free surface elevation, �n+1, and the velocity groupings, Un+1 and Vn+1, are iterative and
so are independent, and readily parallelizable, calculations. However, this is not the case with
the computations of un+1’s, and vn+1’s in (5) and (6). Here, a tridiagonal system of linear
equations must be solved for each row of the computational matrix to get the corresponding
un+1’s, and for each column of the computational grids to get the corresponding vn+1’s. With
the commonly used LU-decomposition (Thomas) algorithm [13] for solving a tridiagonal
system of linear equations, the lower and upper eliminations of the corresponding lower and
upper diagonals of the system must be carried out in sequence, starting from the �rst element
to the last for the lower diagonal elimination and in the reverse direction for the upper diagonal
elimination. Hence, there are strong dependencies among all processes in this algorithm, which
makes it suitable only for sequential calculation [14] and di�cult to e�ciently parallelize.
Thus, with the Boussinesq model, there is a relatively straightforward and expectedly-

e�cient parallelization, as well as an equally di�cult one. The calculations of �n+1, Un+1 and
Vn+1 in both the predictor (3) and corrector (4) steps are highly parallelizable. The tridiagonal
system of the linear equations (5) and (6) that arises from the �nite di�erence scheme is not

x

y

Figure 1. Finite di�erence stencil of the higher order �nite di�erence solution of the Boussinesq equation.
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easily parallelized. However, comparing the amount of the arithmetic operations involved in
the evaluations of �n+1, Un+1 and Vn+1 via the predictor–corrector equations with those of
un+1, and vn+1 from the tridiagonal equations, it is apparent that the former far outnumbers the
latter. Hence, if an e�cient parallel tridiagonal solver can be developed, the serial solution
algorithm can be used without any signi�cant modi�cations to parallelize the Boussinesq
model.
In the present work, the domain decomposition method is used to parallelize the Boussinesq

model. In this method, the parallel algorithm is very similar to the serial algorithm with
some additional routines added to facilitate the communication between processors. Using
this method, all the processors involved in the parallel calculations basically perform the same
computational operations. The only di�erence is in the data being processed in each processor.
There are three important aspects in our parallel algorithm: (1) domain decomposition, (2)
communication, and (3) parallel solver of the tridiagonal system of the simultaneous linear
equations. The three aspects are discussed in the following sections and the parallel algorithm
is presented as a �owchart given in Figure 2.

4.1. Domain decomposition

The physical=computational domain which is used in References [4, 6], and in this paper is
rectangular in shape. In the domain decomposition method, the rectangular domain is divided
into several smaller rectangular sub-domains, where the number of sub-domains is equal to the
number of processors used. With 4 processors, for example, there are three possible ways of
decomposing the domain into equal-area parts as depicted in Figure 3. The best decomposition
depends on the architecture of the system being used and can be automatically determined in
MPI.
An important aspect in decomposing the domain is the load balancing, i.e. all processors

must have equal or almost equal amount of data to be processed. If the number of grid
points (nodes) is divisible by the number of processors, the nodes in each processor is simply
the ratio of the number of nodes to processors. If it is not, we distribute the remainder on
the �rst m processors, where m is the remainder. For instance, if there are 1000 nodes and
three processors used along the x-direction, the �rst two processors will have one node more
than the last processor, which results in a load balance in the corresponding direction. Load
balancing must be created in both x- and y-directions.
From the �nite di�erence stencil in Figure 1, it is apparent that the computation at an

arbitrary point requires values from at most three nodes from the left, right, bottom, and top.
Nodes located within three indices from a boundary must receive values from the processor
on the opposite side of that boundary. To accommodate these near boundary nodes, the size
of each sub-domain is increased by three imaginary nodes in all directions. This is manifested
in the sizes of all the related arrays.

4.2. Communication

Two types of communications occur in this parallel model. The �rst is the communication
between two adjacent processors that occurs during the message passing, and the second is
the inter-processor communication occurring when the parallel model solves the tridiagonal
systems of linear equations. The latter will be explained in the next section.
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Figure 2. Parallel algorithm �owchart. Rectangle with double left=right boundary
involves communication between processors.
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Figure 3. Three possible ways of decomposing a rectangular domain. The numbers
in the sub-domains represent the processor numbers.

In passing the data from one processor to another, an e�cient and safe communication must
be developed. To e�ciently exchange the data between adjacent processors, the data, which
consist of three arrays of horizontal and=or vertical grid points, are �rst stored in a contiguous
memory (which can be facilitated in MPI) prior to executing the sending processes. At the
same time contiguous memories of the same size as used in the sending processes are created
to receive the data from the sending processes. At this point, the data are ready for sending
and receiving processes.
To achieve a safe communication process, we use the non-blocking communication

mpi isend and mpi ireceive, with the latter being posted �rst and followed by the former.
Since the computational domain may be very large, requiring a large number of grids and in
consequence a large amount of memory, the use of non-blocking communication can prevent
the system from ‘memory starving’ that may cause deadlock. With a large number of grids,
the use of non-blocking communication may potentially improve the performance of a parallel
program [12].
Since the problem at hand is two-dimensional, the communication takes place in both the

x- and y-direction (Figure 4). In this parallel model, the communication in the x-direction
is �rst carried out and then followed by the communication in the y-direction. To prevent
overlapping communication at the corners of domain, the former communication conveys only
the data in the real area, which is 3× ny points (ny=number of grids in the y-direction in
one processor) and the latter is responsible for the horizontal real area and the imaginary
corner areas for a total of 3× (nx+3) points (nx=number of grids in the x-direction in one
processor).

4.3. Parallel solver of tridiagonal system

The evaluation of un+1, and vn+1 in (5) and (6) involves the process of solving a series
of independent tridiagonal systems of linear equations in both the x- and y-directions. If
the physical domain is divided into a number of sub-domains in one or both directions, the
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Figure 4. Message passing scheme in parallel Boussinesq model.

tridiagonal systems of equations, which are now distributed over the processors, must be
solved in parallel.
The parallel solution of a tridiagonal system of linear equations is much more di�cult than

its serial counterpart, which can easily and e�ciently be solved by, for example, using the
LU decomposition method. Much research has been done to solve the tridiagonal system of
equations in parallel ([15–17] among others).
To solve for u and v from U and V in (5) and (6), which is the primary challenge to

parallelize this model, we use the algorithm proposed by Mattor et al. [17]. The stability of
this algorithm is similar to that of the serial LU decomposition, which is a desirable feature.
The idea in this algorithm is analogous to the solution of a linear inhomogeneous ordinary
di�erential equation, where the solution is the sum of the particular solution and the linear
combination of the homogenous solutions:

xp=xRp + �
UH
p x

UH
p + �LHp x

LH
p (14)

where xp is the solution of the system, xRp , xUHp , and xLHp are the particular, upper homoge-
neous, and lower homogeneous solutions of the inhomogeneous di�erential equation analogy
and �UHp , �

LH
p are the coe�cients which depend on coupling to the neighbouring solutions.
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The subscript p indicates that the corresponding solution is local to processor p. Detail of
the procedure is given in Mattor et al. [17].
Prior to evaluating the coe�cients �UHp , �

LH
p , the �rst and last elements of xUHp , xLHp , and xRp ,

of all processors are concatenated to form a (2P− 2)× (2P− 2) tridiagonal system with �UHp ,
�LHp as the unknowns and P is the number of processors. Although the algorithm to construct
the tridiagonal system, which involved intercommunication among processors, was given in
the original paper, here we employ the collective communication routine ‘mpi allgather’ of
MPI with ‘OutData’ variable (see Reference [17]), which carries the �rst and last elements
of xUHp , xLHp , and xRp , acting as the sending variable and another variable of size 8P as
the receiving variable. Note that, after the call to mpi allgather, all processors receive an
identical 8P receiving-variable which contains all OutData’s from all processors, ordered from
the smallest to the highest processor-ID. The use of collective communication simpli�es the
concatenation process and is more e�cient on the employed computational platform than the
hand-coded communication [18].
The number of the systems of linear equations is equal to the number of grids used in the

x- or y-direction. To e�ciently solve those systems, the particular and homogenous solutions
of all subsystems are �rst evaluated, followed by distribution of the corresponding xUHp ’s,
xLHp ’s, and xRp’s to all processors using the collective communication, and completed through
evaluation of the �nal solution via (14). Note that since the calculation of un+1’s, and vn+1’s
are independent to each other, the order of these calculations is not important, i.e. we can
�rst calculate vn+1’s followed by the un+1’s or vice versa.

5. PARALLEL MODEL TESTING

The present parallel model is tested for both accuracy and performance. To examine accuracy,
the linear and weakly nonlinear versions of the model are tested using two idealized scenarios
having known analytical solutions. The �rst idealized case is linear wave evolution in a closed
rectangular wave basin. The parallel model is run under the same condition as the idealized
case and the result is compared with the analytically calculated pro�les. In the second test,
the propagation of a weakly nonlinear solitary wave along a long, straight, constant-depth
channel is considered. The nonlinear mode of the parallel model is expected to produce a
solitary wave propagating along the channel with no change in wave form.
To test performance, the parallel model is used to calculate the wave evolution in a

rectangular closed wave basin under three di�erent modes: linear, weakly nonlinear (�rst-
order nonlinear terms only), and highly nonlinear (complete equations given by (1) and (2)).
The model is run using di�erent numbers of processors and the run time for each run is
recorded to observe scalability of the model. As �nal test of the parallel model, the experi-
mental setup of Vincent and Briggs [19], for a regular wave propagating over a 3D shoal, is
simulated. The experimental setup is known to be very nonlinear (e.g. [10]). This practical
application of the model will utilize the highly nonlinear equations, and the e�ciency of the
model is discussed.
The computer system used for testing the accuracy and performance of the parallel model

is an SGI Altix 3700 supercomputer, which consists of 128 1:3GHz Itanium-2J processors in
32 four-CPU nodes connected through gigabit ethernet, with 256 Gigabytes of total distributed
memory. The MPI software used on this platform is MPICH, and the fortran compiler is Intel
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Fortran Compiler. The compiler switches used are: −O3−tpp2. For the Vincent and Briggs
[19] comparison, an additional, small, cluster will be used for benchmarking. This small cluster
consists of 8 2:2 GHz Opteron processors in 4 2-CPU nodes connected through dual gigabit
Ethernet. The MPI software used on this platform is LAM, and the fortran compiler is PGI.
The compiler switches used are: −fastsse−O4−tp=amd64.

5.1. Model accuracy test

5.1.1. Wave evolution in a closed rectangular wave basin. In this idealized case, the wave
evolution in a closed rectangular wave basin of constant depth is considered. The physical
setup of this test is similar to the one used in Reference [20]. The wave basin is a square
7:5 m× 7:5 m basin with a constant depth of 0:45 m. The initial wave pro�le is a Gaussian
hump shape pro�le

�0 =H0e−2[(x−3:75)
2+(y−3:75)2] (15)

where �0 is the initial free surface elevation, H0 is wave amplitude (=0:45 m in this test)
and the initial velocity is zero. The wave basin wall is an impermeable and re�ecting wall.
Detail regarding the numerical implementation of this boundary condition can be found in Wei
et al. [4].
For this setup, the parallel linear model is run for 50 s of model time. The spatial and

time grid sizes for the run are 0:075 m and 0:0143 s, respectively, a total of 100 grids along
both x- and y-sides and 3500 time steps. In each system, 16 processors are used with three
di�erent decompositions: 16× 1, 8× 2, and 4× 4. Snapshots of the free surface evolution
are shown in Figure 5. The temporal variation of the free surface elevation at the centre
of the basin, x=3:75, y=3:75 m, is recorded and compared with the one calculated by
the analytical solution. This comparison is given in Figure 6. The temporal free surface
elevations calculated by the parallel model agree very well with the one calculated by the
analytical model. The parallel model works well with the three very di�erent con�gurations of
processors. The run times for these three con�gurations were also recorded during the runs;
the 16× 1 con�guration took about 46:1 s of CPU time, the 8× 2 took about 21:6 s, and the
4× 4 took 17:0 s. For comparison, similar run with 1 processor took about 62:2 s. The three
parallel runs demonstrate that the 4× 4 decomposition results in the best performance. With
such con�gurations as 16× 1 and 8× 2, even if the load of arithmetic operations involved
in each processor is equal to that in the 4× 4 con�guration, the communication load in the
previous two is heavier than in the 4× 4. Comparing the 4× 4 parallel and serial run times,
we gain a speedup of 3.7 or an e�ciency of 23%. With a small number of grids (nx=100 and
ny=100), the cost of communication is more expensive than the local arithmetic operational
cost, hence results in small e�ciency. This e�ciency, as will be shown later, will increase
as the number of grids increases.

5.1.2. Solitary wave propagation along straight long channel. Next, the weakly nonlinear
mode of the parallel model is tested using an idealized case of solitary wave propagation in a
straight long channel. This idealized case can be found in Wei and Kirby [20]. The velocity
and the surface elevation of the solitary wave are analytically given by

u= A sech2[B(x − Ct)] (16)
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Figure 5. Linear Gaussian-wave pro�les at three di�erent times calculated using 16 processors.
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Figure 6. Temporal variation of free surface elevation at the centre of the wave basin
calculated by the analytic and the parallel numerical models using 16 processors.

�= A1 sech
2[B(x − Ct)] + A2 sech4[B(x − Ct)] (17)

where A, B, C, A1, and A2 are constants that depend on the physical setup of the model [20].
In this case, the channel depth is 0:45m, the wave amplitude is 0:04m, and the length of the
channel is 450 m. The 1-HD domain is discretized into 1500 equally spaced computational
grids, each is 0:3 m long. The wave is initially located at x=80 m.
The parallel weakly nonlinear model is run for 200s using 16 processors. In the course of its

propagation, the wave at t=0; 40; 80; 120, and 160 s, are recorded. These snapshots are given
in Figure 7. This �gure shows that the numerically-calculated solitary wave propagates in
the positive x-direction with constant speed, i.e. the distances between two consecutive wave
forms are constant, and wave height and length and agrees well with the analytic solution.
This example also clearly shows that information is passed correctly from sub-domain to
sub-domain.

5.2. Performance test

Performance of the parallel model is tested using a previous idealized case: wave evolution
in a closed rectangular wave basin. The purpose of this performance test is to observe the
scalability of the model for various domain sizes. Three di�erent domain sizes are considered
and presented in Table I. For all simulations, the depth of the wave basin and the initial wave
height are the same, d=0:45 m and H =0:045 m, respectively.
The model is run under three di�erent modes: linear, weakly nonlinear, and fully nonlinear.

In all parallel runs, even numbers of processors are used: 2; 4; 6; 8; 10; 12; 16; 18; 20; 24; 30,
and 32 processors. Figure 8 shows the speedup and e�ciency of the parallel calculation for
di�erent numbers of processors used. Here, the speedup is de�ned as the ratio of the parallel
run-time to the run time of the serial version of the Boussinesq model (using a single grid
and the Thomas algorithm to solve the tridiagonal systems). Figure 8 shows that the overall
performance of the model is very good. The e�ciency of the model decreases as the number
of processors increases which is apparent in the case of 500× 500- and 1000× 1000-domains.
The rate of the e�ciency decrease is faster for smaller domain. This is due to the ratio of
arithmetic (addition=subtraction and multiplication=division) operation time to communication
time decreasing faster for domains with smaller number of nodes. The performance of the
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Figure 7. Solitary wave propagation along a long straight channel (full line= analytic solution and
dashed line=parallel model) calculated using 16 processors.

Table I. Domain setup for parallel model performance test.

Test LX∗ (m) LY† (m) NX‡ NY§

1 50 50 500 500
2 100 100 1000 1000
3 2000 2000 2000 2000

∗Length of the x-side of the basin.
†Length of the y-side of the basin.
‡Number of grids in the x-direction.
§Number of grids in the y-direction.

model improves as the number of grids increases; a favourable feature of a parallel model
which is intended for simulation on ever-increasing domain sizes. In general, it appears that
the e�ciency is at least 80% for sub-grid sizes of 200× 200 or greater.
Finally, simulation of a 3D experimental setup is presented. One of the most frequently

studied 3D water wave problems is that of wave interaction with a submerged shoal (e.g.
Reference [21]). Here, one of the experiments of Vincent and Briggs [19] will be numerically
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Figure 8. Parallel computational speedup=e�ciency of the parallel Boussinesq model in computing the
evolution of the Gaussian-wave in a rectangular basin. The squares are from the linear model, the circles

from the weakly nonlinear model, and the triangles from the highly nonlinear model.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (in press)



K. I. SITANGGANG AND P. LYNETT

Figure 9. Plan view of regular wave propagation (period =1:3 s, height = 4:8 cm) over a
submerged shoal at: (a) time=6s; (b) time=10s; (c) time=18s; and (d) time=50s. The

shoal location is given by the contours. Simulation uses 8 CPUs.

recreated. An elliptic shoal 6:1m long and 7:92m wide is placed in a wave tank that is 35m
wide and 29 m long. The shoal has a maximum height of 30:5 cm in 45:7 cm of water. The
exact mathematical representation of the shoal can be found in Reference [19]. While many
di�erent wave conditions were examined experimentally, here only a single regular wave case
is simulated with period =1:3 s and height =4:8 cm. The simulations use the highly nonlinear
set of the Boussinesq equations.
Figure 9 gives snapshots of the waves as they transform over the shoal. The waves narrow

and steepen as they move over the shoal, while refraction focuses wave energy behind the
shoal. The result is a complex, highly nonlinear, and multi-directional wave �eld. The numer-
ical comparisons with experimental data, for any number of processors used, are identical to
those presented in Lynett and Liu [10] for the ‘one-layer’ model (equivalent to the equations
of Wei et al. [4]), exhibiting very good agreement. Hence, these identical comparisons will
not be included here as well.
Tables II and III give the wall clock time per simulated wave period and e�ciency of the

parallel model, on two platforms for two di�erent grid sizes. Table II shows the results using
40 grid points per incident wavelength, while the values in Table III use 80 grid points per
incident wavelength. The total numbers of grid points are given in the table captions. The
Itanium-2 cluster shows e�ciency similar to that given in Figure 8 for the like-sized matrix
dimensions. The Opteron cluster yields slightly better e�ciency, which may be attributed to
the dual-gigabit Ethernet or the use of LAM. Also of signi�cant note are the relative CPU
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Table II. Vincent and Briggs shoal, fully nonlinear simulation, [nx; ny]= [622; 515].

Opteron cluster Itanium-2 cluster

Wall clock time (s)= Wall clock time (s)=
# CPUs wave period E�ciency wave period E�ciency

1 362 2888
2 187 0.97 1586 0.91
4 94 0.96 831 0.87
6 71 0.85 549 0.88
8 56 0.81 425 0.85
16 244 0.74
32 153 0.59

Table III. Vincent and Briggs shoal, fully nonlinear simulation, [nx; ny]= [1242; 1029].

Opteron cluster Itanium-2 cluster

Wall clock time (s)= Wall clock time (s)=
# CPUs wave period E�ciency wave period E�ciency

1 3994 20670
2 2034 0.98 11351 0.91
4 1005 0.99 5802 0.89
6 686 0.97 4424 0.78
8 539 0.93 3332 0.78
16 1715 0.75
32 858 0.75

times for the two platforms, with the superior �oating-point capabilities of the AMD chips
showing their strength.

6. CONCLUSION

In the present work, the Boussinesq model of Wei et al. [4] is parallelized using the domain
decomposition method, where each processor performs the same operations. The parallel al-
gorithm is identical to its serial counterpart, based on an iterative predictor–corrector scheme
also requiring a tridiagonal solution for each iteration. The model test indicates that both the
validity and the performance of the model are excellent. The performance of the model may
be further improved if a more e�cient parallel tridiagonal solver is employed. Success at par-
allelizing the Boussinesq model will allow for large domain simulation which is not possible
to run on a single PC due to limited memory size and large computation time. This parallel
model provides the future opportunity for large wave-resolving simulations in the nearshore,
with global domains of many millions of grid points, covering O(100km2) and greater basins.
Additionally, real-time simulation with Boussinesq equations becomes a possibility.
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